12,259 research outputs found

    Substance P-immunoreactive neurons in hamster retinas

    Get PDF
    Light-microscopic immunocytochemistry was utilized to localize the different populations of substance P-immunoreactive (SP-IR) neurons in the hamster retina. Based on observation of 2505 SP-IR neurons in transverse sections, 34% were amacrine cells whose pear-shaped or round cell bodies (7-8 μm) were situated in the inner half of the inner nuclear layer (INL) or in the inner plexiform layer (IPL), while 66% of SP-IR somata (6-20 μm) were located in the ganglion cell layer (GCL) which were interpreted to be displaced amacrine cells and retinal ganglion cells (RGCs). At least three types of SP-IR amacrine cells were identified. The SP-IR processes were distributed in strata 1, 3, and 5 with the densest plexus in stratum 5 of the inner plexiform layer. In the wholemounted retina, the SP-IR cells were found to be distributed throughout the entire retina and their mean number was estimated to be 4224 ± 76. Two experiments were performed to clarify whether any of the SP-IR neurons in the GCL were RGCs. The first experiment demonstrated the presence of SP-IR RGCs by retrogradely labeling the RGCs and subsequently staining the SP-IR cells in the retina using immunocytochemistry. The second experiment identified SP-IR central projections of RGCs to the contralateral dorsal lateral geniculate nucleus. This projection disappeared following removal of the contralateral eye. The number of SP-IR RGCs was estimated following optic nerve section. At 2 months after sectioning the optic nerve, the total number of SP-IR neurons in the GCL reduced from 4224 ± 76 to a mean of 1192 ± 139. Assuming that all SP-IR neurons in the GCL which disappeared after nerve section were RGCs, the number of SP-IR RGCs was estimated to be 3032, representing 3-4% of the total RGCs. In summary, findings of the present study provide evidence for the existence of SP-IR RGCs in the hamster retina.published_or_final_versio

    Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer

    Get PDF
    In emerging optoelectronic applications, such as water photolysis, exciton fission and novel photovoltaics involving low-dimensional nanomaterials, hot-carrier relaxation and extraction mechanisms play an indispensable and intriguing role in their photo-electron conversion processes. Two-dimensional transition metal dichalcogenides have attracted much attention in above fields recently; however, insight into the relaxation mechanism of hot electron-hole pairs in the band nesting region denoted as C-excitons, remains elusive. Using MoS2 monolayers as a model two-dimensional transition metal dichalcogenide system, here we report a slower hot-carrier cooling for C-excitons, in comparison with band-edge excitons. We deduce that this effect arises from the favourable band alignment and transient excited-state Coulomb environment, rather than solely on quantum confinement in two-dimension systems. We identify the screening-sensitive bandgap renormalization for MoS2 monolayer/graphene heterostructures, and confirm the initial hot-carrier extraction for the C-exciton state with an unprecedented efficiency of 80%, accompanied by a twofold reduction in the exciton binding energy

    Strong Casimir force reduction through metallic surface nanostructuring

    Get PDF
    The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force plays a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction.Comment: 11 pages, 8 figure

    Casimir forces on a silicon micromechanical chip

    Full text link
    Quantum fluctuations give rise to van der Waals and Casimir forces that dominate the interaction between electrically neutral objects at sub-micron separations. Under the trend of miniaturization, such quantum electrodynamical effects are expected to play an important role in micro- and nano-mechanical devices. Nevertheless, utilization of Casimir forces on the chip level remains a major challenge because all experiments so far require an external object to be manually positioned close to the mechanical element. Here, by integrating a force-sensing micromechanical beam and an electrostatic actuator on a single chip, we demonstrate the Casimir effect between two micromachined silicon components on the same substrate. A high degree of parallelism between the two near-planar interacting surfaces can be achieved because they are defined in a single lithographic step. Apart from providing a compact platform for Casimir force measurements, this scheme also opens the possibility of tailoring the Casimir force using lithographically defined components of non-conventional shapes

    Study of psi(2S) decays to X J/psi

    Full text link
    Using J/psi -> mu^+ mu^- decays from a sample of approximately 4 million psi(2S) events collected with the BESI detector, the branching fractions of psi(2S) -> eta J/psi, pi^0 pi^0 J/psi, and anything J/psi normalized to that of psi(2S) -> pi^+ pi^- J/psi are measured. The results are B(psi(2S) -> eta J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.098 \pm 0.005 \pm 0.010, B(psi(2S) -> pi^0 pi^0 J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.570 \pm 0.009 \pm 0.026, and B(psi(2S) -> anything J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 1.867 \pm 0.026 \pm 0.055.Comment: 13 pages, 8 figure

    Solubility of strontium-substituted apatite by solid titration

    Get PDF
    Solid titration was used to explore the solubility isotherms of partially (Srx-HAp, x = 1, 5, 10, 40, 60 mol.%) and fully substituted strontium hydroxyapatite (Sr-HAp). Solubility increased with increasing strontium content. No phase other than strontium-substituted HAp, corresponding to the original titrant, was detected in the solid present at equilibrium; in particular, dicalcium hydrogen phosphate was not detected at low pH. The increase in solubility with strontium content is interpreted as a destabilization of the crystal structure by the larger strontium ion. Carbonated HAp was formed in simulated body fluid containing carbonate on seeding with Sr10-HAp, but the precipitate was strontium-substituted on seeding with Sr-HAp. Strontium-substituted HAp might be usable as a template for the growth of new bone, since nucleation appears to be facilitated. © 2008 Acta Materialia Inc.postprin

    Solubility of strontium-substituted apatite by solid titration

    Get PDF
    Solid titration was used to explore the solubility isotherms of partially (Srx-HAp, x = 1, 5, 10, 40, 60 mol.%) and fully substituted strontium hydroxyapatite (Sr-HAp). Solubility increased with increasing strontium content. No phase other than strontium-substituted HAp, corresponding to the original titrant, was detected in the solid present at equilibrium; in particular, dicalcium hydrogen phosphate was not detected at low pH. The increase in solubility with strontium content is interpreted as a destabilization of the crystal structure by the larger strontium ion. Carbonated HAp was formed in simulated body fluid containing carbonate on seeding with Sr10-HAp, but the precipitate was strontium-substituted on seeding with Sr-HAp. Strontium-substituted HAp might be usable as a template for the growth of new bone, since nucleation appears to be facilitated. © 2008 Acta Materialia Inc.postprin
    corecore