43 research outputs found

    Sensitivity of the human auditory cortex to acoustic degradation of speech and non-speech sounds

    Get PDF
    The perception of speech is usually an effortless and reliable process even in highly adverse listening conditions. In addition to external sound sources, the intelligibility of speech can be reduced by degradation of the structure of speech signal itself, for example by digital compression of sound. This kind of distortion may be even more detrimental to speech intelligibility than external distortion, given that the auditory system will not be able to utilize sound source-specific acoustic features, such as spatial location, to separate the distortion from the speech signal. The perceptual consequences of acoustic distortions on speech intelligibility have been extensively studied. However, the cortical mechanisms of speech perception in adverse listening conditions are not well known at present, particularly in situations where the speech signal itself is distorted. The aim of this thesis was to investigate the cortical mechanisms underlying speech perception in conditions where speech is less intelligible due to external distortion or as a result of digital compression. In the studies of this thesis, the intelligibility of speech was varied either by digital compression or addition of stochastic noise. Cortical activity related to the speech stimuli was measured using magnetoencephalography (MEG). The results indicated that degradation of speech sounds by digital compression enhanced the evoked responses originating from the auditory cortex, whereas addition of stochastic noise did not modulate the cortical responses. Furthermore, it was shown that if the distortion was presented continuously in the background, the transient activity of auditory cortex was delayed. On the perceptual level, digital compression reduced the comprehensibility of speech more than additive stochastic noise. In addition, it was also demonstrated that prior knowledge of speech content enhanced the intelligibility of distorted speech substantially, and this perceptual change was associated with an increase in cortical activity within several regions adjacent to auditory cortex. In conclusion, the results of this thesis show that the auditory cortex is very sensitive to the acoustic features of the distortion, while at later processing stages, several cortical areas reflect the intelligibility of speech. These findings suggest that the auditory system rapidly adapts to the variability of the auditory environment, and can efficiently utilize previous knowledge of speech content in deciphering acoustically degraded speech signals.Puheen havaitseminen on useimmiten vaivatonta ja luotettavaa myös erittÀin huonoissa kuunteluolosuhteissa. Puheen ymmÀrrettÀvyys voi kuitenkin heikentyÀ ympÀristön hÀiriölÀhteiden lisÀksi myös silloin, kun puhesignaalin rakennetta muutetaan esimerkiksi pakkaamalla digitaalista ÀÀntÀ. TÀllainen hÀiriö voi heikentÀÀ ymmÀrrettÀvyyttÀ jopa ulkoisia hÀiriöitÀ voimakkaammin, koska kuulojÀrjestelmÀ ei pysty hyödyntÀmÀÀn ÀÀnilÀhteen ominaisuuksia, kuten ÀÀnen tulosuuntaa, hÀiriön erottelemisessa puheesta. Akustisten hÀiriöiden vaikutuksia puheen havaitsemiseen on tutkttu laajalti, mutta havaitsemiseen liittyvÀt aivomekanismit tunnetaan edelleen melko puutteelisesti etenkin tilanteissa, joissa itse puhesignaali on laadultaan heikentynyt. TÀmÀn vÀitöskirjan tavoitteena oli tutkia puheen havaitsemisen aivomekanismeja tilanteissa, joissa puhesignaali on vaikeammin ymmÀrrettÀvissÀ joko ulkoisen ÀÀnilÀhteen tai digitaalisen pakkauksen vuoksi. VÀitöskirjan neljÀssÀ osatutkimuksessa lyhyiden puheÀÀnien ja jatkuvan puheen ymmÀrrettÀvyyttÀ muokattiin joko digitaalisen pakkauksen kautta tai lisÀÀmÀllÀ puhesignaaliin satunnaiskohinaa. PuheÀrsykkeisiin liittyvÀÀ aivotoimintaa tutkittiin magnetoenkefalografia-mittauksilla. Tutkimuksissa havaittiin, ettÀ kuuloaivokuorella syntyneet herÀtevasteet voimistuivat, kun puheÀÀntÀ pakattiin digitaalisesti. Sen sijaan puheÀÀniin lisÀtty satunnaiskohina ei vaikuttanut herÀtevasteisiin. Edelleen, mikÀli puheÀÀnien taustalla esitettiin jatkuvaa hÀiriötÀ, kuuloaivokuoren aktivoituminen viivÀstyi hÀiriön intensiteetin kasvaessa. Kuuntelukokeissa havaittiin, ettÀ digitaalinen pakkaus heikentÀÀ puheÀÀnien ymmÀrrettÀvyyttÀ voimakkaammin kuin satunnaiskohina. LisÀksi osoitettiin, ettÀ aiempi tieto puheen sisÀllöstÀ paransi merkittÀvÀsti hÀiriöisen puheen ymmÀrrettÀvyyttÀ, mikÀ heijastui aivotoimintaan kuuloaivokuoren viereisillÀ aivoalueilla siten, ettÀ ymmÀrrettÀvÀ puhe aiheutti suuremman aktivaation kuin heikosti ymmÀrrettÀvÀ puhe. VÀitöskirjan tulokset osoittavat, ettÀ kuuloaivokuori on erittÀin herkkÀ puheÀÀnien akustisille hÀiriöille, ja myöhemmissÀ prosessoinnin vaiheissa useat kuuloaivokuoren viereiset aivoalueet heijastavat puheen ymmÀrrettÀvyyttÀ. Tulosten mukaan voi olettaa, ettÀ kuulojÀrjestelmÀ mukautuu nopeasti ÀÀniympÀristön vaihteluihin muun muassa hyödyntÀmÀllÀ aiempaa tietoa puheen sisÀllöstÀ tulkitessaan hÀiriöistÀ puhesignaalia

    Ventral and dorsal pathways of speech perception: An intracerebral ERP study.

    No full text
    Recent theory of physiology of language suggests a dual stream dorsal/ventral organization of speech perception. Using intra-cerebral Event-related potentials (ERPs) during pre-surgical assessment of twelve drug-resistant epileptic patients, we aimed to single out electrophysiological patterns during both lexical-semantic and phonological monitoring tasks involving ventral and dorsal regions respectively. Phonological information processing predominantly occurred in the left supra-marginal gyrus (dorsal stream) and lexico-semantic information occurred in anterior/middle temporal and fusiform gyri (ventral stream). Similar latencies were identified in response to phonological and lexico-semantic tasks, suggesting parallel processing. Typical ERP components were strongly left lateralized since no evoked responses were recorded in homologous right structures. Finally, ERP patterns suggested the inferior frontal gyrus as the likely final common pathway of both dorsal and ventral streams. These results brought out detailed evidence of the spatial-temporal information processing in the dual pathways involved in speech perception

    Neuromagnetic source localization of auditory evoked fields and intracerebral evoked potentials: a comparison of data in the same patients

    No full text
    International audienceObjective: To compare the localizations of different neural sources (a) obtained from intracerebral evoked responses and (b) calculated from surface auditory evoked Âźeld responses recorded in the same subjects. Our aim was to evaluate the resolving power of a source localization method currently used in our laboratory, which is based on a recent spatio-temporal algorithm used in magneto-encephalography (MEG). Methods: Auditory evoked responses were studied in 4 patients with medically intractable epilepsy. These responses were recorded from depth electrodes implanted in the auditory cortex for pre-surgical evaluation (stereo-electro-encephalography (SEEG)), as well as from surface captors (for MEG) placed on the scalp after removal of the depth electrodes. Auditory stimuli were clicks and short tone bursts with different frequencies. Results: All middle-latency components (from 13 to 70 ms post-stimulus onset) were recorded and localized (via SEEG) along Heschl's gyrus (HG). MEG reliably localized Pam and P1m in the same area of HG that intracerebral recordings localized them in. No signiÂźcant delay between SEEG and MEG latencies was observed. Both methods suggest that N1 is generated from different sources in the intermediate and lateral parts of the HG and in the planum temporale (PT). The source of P2 (PT and/or Area 22) remains unclear and was in one case, localized in different regions according to the method used. This latter component may therefore also be generated by different sources. Conclusions: The results suggest that both techniques are useful and may be used together in a complementary fashion. Intracerebral recordings allow the researcher to validate and interpret surface recordings.

    Emotion processing in words: a test of the neural re-use hypothesis using surface and intracranial EEG

    Get PDF
    International audienceThis study investigates the spatiotemporal brain dynamics of emotional information processing during reading using a combination of surface and intracranial electroencephalography (EEG). Two different theoretical views were opposed. According to the standard psycholinguistic perspective, emotional responses to words are generated within the reading network itself subsequent to semantic activation. According to the neural re-use perspective, brain regions that are involved in processing emotional information contained in other stimuli (faces, pictures, smells) might be in charge of the processing of emotional information in words as well. We focused on a specific emotion-disgust-which has a clear locus in the brain, the anterior insula. Surface EEG showed differences between disgust and neutral words as early as 200 ms. Source localization suggested a cortical generator of the emotion effect in the left anterior insula. These findings were corroborated through the intracranial recordings of two epileptic patients with depth electrodes in insular and orbitofrontal areas. Both electrodes showed effects of disgust in reading as early as 200 ms. The early emotion effect in a brain region (insula) that responds to specific emotions in a variety of situations and stimuli clearly challenges classic sequential theories of reading in favor of the neural re-use perspective

    Differential role of visuospatial working memory in the propensity toward uncertainty in patients with obsessive-compulsive disorder and in healthy subjects.

    No full text
    International audienceObsessive-compulsive disorder (OCD) is associated with visuospatial working memory deficits. Intolerance of uncertainty is thought to be a core component of OCD symptoms. Recent findings argue for a possible relationship between abilities in visuospatial memory and uncertainty. However, this relationship remains unclear in both OCD patients and healthy subjects. To address this issue, we measured performance in visuospatial working memory and the propensity to express uncertainty during decision making. We assessed their relationship and the temporal direction of this relationship in both OCD patients and healthy subjects. Baseline abilities in visuospatial working memory were measured with the Corsi block-tapping test. A delayed matching-to-sample task was used to identify explicit situations of certainty, uncertainty and ignorance and to assess continuous performance in visuospatial working memory. Behavioural variables were recorded over 360 consecutive trials in both groups. Baseline scores of visuospatial working memory did not predict the number of uncertain situations in OCD patients whereas they did in healthy subjects. Uncertain trials led to reduced abilities in visuospatial working memory to 65% of usual performance in OCD patients whereas they remained stable in healthy subjects. The present findings show an opposite temporal direction in the relationship between abilities in working memory and uncertainty in OCD patients and healthy subjects. Poor working memory performance contributes to the propensity to feel uncertainty in healthy subjects whereas uncertainty contributes to decreased continuous performance in working memory in OCD patients

    Objective measures of neural processing of interaural time differences

    Get PDF
    We assessed neural sensitivity to interaural time differences (ITDs) conveyed in the temporal fine structure (TFS) of low-frequency sounds and ITDs conveyed in the temporal envelope of amplitude-modulated (AM’ed) high-frequency sounds. Using electroencephalography (EEG), we recorded brain activity to sounds in which the interaural phase difference (IPD) of the TFS (or the modulated temporal envelope) was repeatedly switched between leading in one ear or the other. When the amplitude of the tones is modulated equally in the two ears at 41 Hz, the interaural phase modulation (IPM) evokes an IPM following-response (IPM-FR) in the EEG signal. For low-frequency signals, IPM-FRs were reliably obtained, and largest for an IPM rate of 6.8 Hz and when IPD switches (around 0°) were in the range 45–90°. IPDs conveyed in envelope of high-frequency tones also generated IPM-FRs; response maxima occurred for IPDs switched between 0° and 180° IPD. This is consistent with the interpretation that distinct binaural mechanisms generate the IPM-FR at low and high frequencies, and with the reported physiological responses of medial superior olive (MSO) and lateral superior olive (LSO) neurons in other mammals. Low-frequency binaural neurons in the MSO are considered maximally activated by IPDs in the range 45–90°, consistent with their reception of excitatory inputs from both ears. High-frequency neurons in the LSO receive excitatory and inhibitory input from the two ears receptively—as such maximum activity occurs when the sounds at the two ears are presented out of phase.9 page(s
    corecore