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Abstract We assessed neural sensitivity to interaural time differences (ITDs) con-
veyed in the temporal fine structure (TFS) of low-frequency sounds and ITDs con-
veyed in the temporal envelope of amplitude-modulated (AM’ed) high-frequency 
sounds. Using electroencephalography (EEG), we recorded brain activity to sounds 
in which the interaural phase difference (IPD) of the TFS (or the modulated tem-
poral envelope) was repeatedly switched between leading in one ear or the other. 
When the amplitude of the tones is modulated equally in the two ears at 41 Hz, the 
interaural phase modulation (IPM) evokes an IPM following-response (IPM-FR) in 
the EEG signal. For low-frequency signals, IPM-FRs were reliably obtained, and 
largest for an IPM rate of 6.8 Hz and when IPD switches (around 0°) were in the 
range 45–90°. IPDs conveyed in envelope of high-frequency tones also generated 
IPM-FRs; response maxima occurred for IPDs switched between 0° and 180° IPD. 
This is consistent with the interpretation that distinct binaural mechanisms gener-
ate the IPM-FR at low and high frequencies, and with the reported physiological 
responses of medial superior olive (MSO) and lateral superior olive (LSO) neurons 
in other mammals. Low-frequency binaural neurons in the MSO are considered 
maximally activated by IPDs in the range 45–90°, consistent with their reception of 
excitatory inputs from both ears. High-frequency neurons in the LSO receive excit-
atory and inhibitory input from the two ears receptively—as such maximum activity 
occurs when the sounds at the two ears are presented out of phase.
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1  Introduction

1.1  Advantages of Binaural Listening

Binaural hearing confers considerable advantages in everyday listening environ-
ments. By comparing the timing and intensity of a sound at each ear, listeners can 
locate its source on the horizontal plane, and exploit these differences to hear out 
signals in background noise—an important component of ‘cocktail party listening’. 
Sensitivity to interaural time differences (ITDs) in particular has received much 
attention, due in part to the exquisite temporal performance observed; for sound 
frequencies lower than about 1.3 kHz, ITDs of just a few tens of microseconds are 
discriminable, observed both at the neural and behavioural levels. Sensitivity to 
ITDs decreases with ageing (Herman et al. 1977; Abel et al. 2000; Babkoff et al. 
2002), and is typically impaired in hearing loss, albeit variability across individuals 
and aetiologies (see Moore et al. 1991, for review), with reduced sensitivity most 
apparent when trying to localise sources in background noise (Lorenzi et al. 1999). 
ITD processing may also remain impaired following surgery to correct conductive 
hearing loss (Wilmington et al. 1994), and sensitivity to ITDs is typically poor in 
users of hearing technologies such as bilateral cochlear implants (CIs). In terms of 
restoring binaural function in therapeutic interventions, there is considerable benefit 
to be gained from developing objective measures to assess binaural processing.

1.2  Objective Measures of Binaural Hearing

Direct measures of ITD sensitivity, attributed to multiple generator sites in the thal-
amus and auditory cortex (Picton et al. 1974; Hari et al. 1980; Näätänen and Picton 
1987; Liégeois-Chauvel et al. 1994), have been demonstrated in auditory-evoked 
‘P1-N1-P2’ responses, with abrupt changes in either the ITD (e.g. McEvoy 1991), 
or the interaural correlation of a noise (e.g. Chait et al. 2005), eliciting responses 
with typical latencies of 50, 100, and 175 ms, respectively. Although these stud-
ies demonstrate the capacity to assess binaural processing of interaural temporal 
information, they provide for only a relatively crude measure of ITD sensitivity, 
comparing, for example, EEG responses to diotic (identical) sounds at the two ears 
with responses to sounds that are statistically independent at the two ears. A more 
refined measure of ITD sensitivity would provide the possibility of assessing neural 
mechanisms of binaural processing in the human brain, aiding bilateral fitting of 
CIs in order to maximise binaural benefit.
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2  Methods

Eleven NH listeners took part in the low-frequency EEG experiment (6 male; mean 
age = 24.4 years, range = 18–34 years). Four listeners took part in the high-frequen-
cy experiment (3 male; mean age = 30.0 years, range = 27–34 years). All subjects 
demonstrated hearing levels of 20 dB hearing level or better at octave frequencies 
between 250 and 8000 Hz, and reported a range of musical experience. Subjects 
were recruited from poster advertisements. All experiments were approved by the 
UCL Ethics Committee. Subjects provided informed consent, and were paid an 
honorarium for their time. For EEG recordings assessing sensitivity to ITDs in the 
low-frequency TFS, 520-Hz carrier tones were modulated with 100 % sinusoidal 
AM (SAM), at a rate of 41 Hz. Stimuli were presented continuously for 4 min and 
48 s (70 epochs of 4.096 s) at 80 dB SPL. Carrier and modulation frequencies were 
set so that an integer number of cycles fitted into an epoch window. The carrier 
was presented with an IPD (in the range ± 11.25°– ± 135° IPD around 0°), whilst 
the modulation envelope remained diotic at all times. In order to generate IPM, the 
overall magnitude of the carrier IPD was held constant throughout the stimulus, 
but the ear at which the signal was leading in phase was periodically modulated 
between right and left. Each IPM was applied instantaneously at a minimum in the 
modulation cycle in order to minimize the (monaural) salience of the instantaneous 
phase transition (see Fig. 1). Stimuli were AM’ed at a rate of 41 Hz. The IPD cycled 
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Fig. 1  AM stimuli presented to each ear. Top panel, red and blue correspond to sounds presented to 
right and left ears, respectively. Filled horizontal bars indicate the ear with leading phase. The IPD 
of this example corresponds to ± 90° (switching from − 45 to 45°, and vice versa, in the two ears). 
IPD transitions are introduced when the stimulus amplitude is zero. Bottom panel, three IPM rates 
employed. Red regions illustrate an IPD of + 90° IPD, whereas blue regions illustrate an IPD of − 90° 
IPD. IPM rate is controlled by the number of AM cycles where the IPD is held constant
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periodically at three different rates: 1.7, 3.4 and 6.8 Hz, referred as IPD cycle rates. 
However, since responses were expected to be elicited by each IPD transition, we 
refer to the stimulus largely in terms of IPM rate, which indicates the total number 
of IPD transitions per second, irrespective of direction. Thus, the three IPM rates 
tested were: 3.4, 6.8 and 13.7 Hz. These IPM rates corresponded to an IPD transi-
tion every 12, 6 and 3 AM cycles, respectively (Fig. 1).

For EEG recordings to ITDs conveyed in the stimulus envelope, 3000-Hz tones 
were modulated with a transposed envelope (Bernstein and Trahiotis 2002) at 
128 Hz, and a second-order AM (41 Hz) applied diotically. IPDs of the 128-Hz 
envelopes were switched between ± 90° IPD (around 0°) or from systematically be-
tween 0° and 180° (i.e. transposed phase of − 90° in one ear and + 90° in the other).

Stimuli were created in Matlab, and presented by an RME Fireface UC sound 
card (24 bits, 48 kHz sampling rate) connected to Etymotic Research ER-2 insert 
earphones. Sound level was verified with a 2-cc B&K artificial ear. EEG responses 
were recorded differentially from surface electrodes; the reference electrode was 
placed on the vertex (Cz), and the ground electrode on the right clavicle. Two re-
cording electrodes were placed on the left and right mastoid (TP9 and TP10). Elec-
trode impedances were kept below 5 kΩ. Responses were amplified with a 20x gain 
(RA16LI Tucker-Davis Technologies), and digitalized at a rate of 24.414 kHz, and 
a resolution of 16 bits/sample (Medusa RA16PA Tucker-Davis Technologies). The 
cutoff frequencies of the internal bandpass filter were 2.2 and 7.5 kHz, respectively 
(6 dB per octave). Recordings were next stored on a RX5 Pentusa before being 
passed to hard disk via custom software. Recordings were processed off-line using 
Matlab.

During the experiment, subjects sat in a comfortable chair in an acoustically 
isolated sound booth, and watched a subtitled film of their choice. Subjects were en-
couraged to sit as still as possible, and were offered a short break every 15–20 min. 
Epochs of each measurement were transformed to the frequency domain (fast Fou-
rier transform (FFT) of 100,000 points; 0.24 Hz of resolution) and FFTs from all 
epochs were averaged. Six frequency bins were tested for significance; correspond-
ing to the IPD cycle rate and the next four harmonics, as well as the frequency bin 
corresponding to the AM rate.

3  Results

3.1  Sensitivity to IPDs Conveyed in the Temporal Fine 
Structure of Low-Frequency Sounds

EEG recordings were obtained for three IPM rates (3.4, 6.8 and 13.7 Hz) and seven 
IPMs (± 11.25°, ± 22.5°, ± 45°, ± 67.5°, ± 90°, ± 112.5° and ± 135°), generating a 
total of 30 conditions (21 dichotic, 9 diotic), each lasting ≈ 5 min, giving a total 
recording time of 2.5 h. Figure 2 plots the spectral magnitude of a typical recording 
for a dichotic condition with IPM of ± 67.8° and IPM rate of 6.8 Hz,, in which a 
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significant response was observed for the frequency bin corresponding to the IPM 
rate (black arrow), and corresponding diotic conditions are shown in Fig. 3—for 
which no response to the IPM rate was observed (see Ross 2008). Note that in both 
conditions the ASSR to the AM rate (41 Hz) was clearly observed.
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Fig. 2  Average ( thick line) responses in time and frequency domains to dichotic stimuli, with 
individual responses shown in thin gray lines. Time domain responses are shown in left panels 
and frequency responses in right panels. Responses to low, middle and high IPM rates (3.4, 6.8 
and 13.7 Hz) in top, middle, and bottom rows. All responses correspond to the ± 67.8° IPD condi-
tion. Dashed vertical lines in time-domain responses indicate the time of the IPD transition. Black 
markers in the frequency domain indicate IPM rate
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Fig. 3  Average ( thick 
line) responses in time and 
frequency domains to diotic 
stimuli. Data are plotted in a 
manner consistent with Fig. 2
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Figure 2 shows responses analysed in the time domain (left panels) and the fre-
quency domain (right) for a single IPM condition (± 67.8°). Individual (gray lines) 
and group mean (black) for the slowest IPM rate (3.4 Hz; Fig. 3, top), typically 
displayed a P1-N1-P2 response to each IPD transition, with component latencies 
of approximately 50, 100 and 175 ms, respectively. The next two harmonics (6.8 
and 10.2 Hz) were also observed clearly in the response to the 3.4-Hz IPM. Evoked 
responses to the intermediate IPM rate (6.8 Hz; Fig. 2) became steady state at the 
same rate as the IPM, and so we term this response the IPM-FR. In the time domain 
(left-middle), the peak amplitude of the IPM-FR is broadly the same as that for the 
slowest IPM rate (3.2 Hz), but responses were more steady state than those at the 
low rate, being more consistent in phase and amplitude across epochs (evidenced 
by a more favourable SNR). This is confirmed by comparing the variability of the 
individual responses in the time domain as well as the frequency domain (Fig. 2), 
where the spectral magnitude was almost twice larger than that the largest magni-
tude obtained at the lowest IPM rate. Moreover, the average spectral magnitude of 
the next harmonics was almost twice smaller than those obtained at the lowest IPM 
rate. Finally, the IPM-FR is observed at the most rapid IPM rate (13.7 Hz, bottom 
panels of Fig. 3). As for the intermediate IPM rate, responses show a steady-state 
pattern in the time domain, albeit with a reduced amplitude. Frequency domain 
analysis revealed the following response occurred primarily at the frequency bin 
corresponding to the IPM rate. Harmonics were no longer observed in the grand 
averaged data.

For analysis of data in the frequency domain, Hotelling’s T2 tests were applied 
to the frequency bins corresponding to the IPM rate and the next four harmonics. 
Responses were classified as significant if either the left (Tp9), right (Tp10), or both 
electrodes observed a significant response for a given frequency bin. The frequency 
bin corresponding to the IPM rate (second harmonic) elicited the highest number of 
significant responses. Indeed, responses obtained at IPM rates of 6.8 and 13.7 Hz 
were observed for all ten subjects for the ± 45° and ± 135° IPD conditions, respec-
tively. This was not the case for the lowest IPM rate where significant responses 
were observed for only seven subjects. In terms of spectral magnitude, responses 
obtained at the intermediate IPM rate showed the largest magnitude at the second 
harmonic, i.e. the harmonic corresponding to the IPM rate, consistent with the hy-
pothesis that a following-response (FR) is evoked by IPM.

Finally, we assessed the frequency bin corresponding to the IPM rate. A three-
way non-parametric repeated measures ANOVA with factors of electrode position 
(left or right mastoid), IPM rate, and IPD revealed that factors IPM rate ( p < 0.001), 
IPD ( p < 0.001) as well as the interaction between IPM rate and IPD ( p = 0.01) were 
significant. Responses obtained at 6.8 Hz IPM rate were maximal for IPDs span-
ning ± 45– ± 90°, whereas responses obtained at 13.4 Hz IPM rate increased mono-
tonically with increasing IPD.
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3.2  Sensitivity to IPDs Conveyed in the Temporal Envelope of 
High-Frequency Sounds

In contrast to low-frequency tones, the magnitude of the IPM-FR for IPDs conveyed 
in the modulated envelopes of high-frequency (3-kHz) tones was relatively low for 
IPMs switching between ± 90° IPD. Therefore, we also assessed EEG responses to 
IPMs switching between 0° (in phase) and 180° (anti-phasic) IPD conditions. These 
latter switches evoked considerably larger EEG responses (Fig. 4, left). The magni-
tude of the IPM-FR decreased with increasing carrier frequency, and was sensitive 
to an offset in the carrier frequency between the ears (Fig. 4, right).
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Fig. 4  Left—magnitude of IPM-FRs to 3-kHz transposed tones in which envelope IPDs were 
switched between ± 90°, or between 0° and 180° (transposed phase of 90° at one and − 90° at the 
opposite ear). Right—magnitude of IPM-FR as a function of carrier frequency mismatch. In both 
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4  Discussion

We have demonstrated that an IPM-FR can be reliably obtained and used as an ob-
jective measure of binaural processing. Depending on the IPM rate, periodic IPMs 
can evoke a robust steady-state following response. This is consistent with previous 
reports that an abrupt change in carrier IPD evokes a P1-N1-P2 transient response 
(Ross et al. 2007a, b; Ross 2008), and with evidence that abrupt periodic changes 
in interaural correlation evoked steady-state responses (Dajani and Picton 2006; 
Massoud et al. 2011). The data also demonstrate that the magnitude of the IPM-FR 
varies with both the IPM rate and the magnitude of the carrier IPD. As diotic carrier 
phase modulation did not elicit detectable neural responses, the observed responses 
to IPM must reflect binaural processing rather than the monaural encoding of abrupt 
phase shifts (Ross et al. 2007a, b; Ross 2008). The time-domain response wave-
forms are consistent with evoked responses occurring in cortical and sub-cortical 
sources along the auditory pathway, and that they originate from superposition of 
transient middle-latency responses (Galambos et al. 1981).

The difference in the preferred IPDs for EEG signals conveying IPDs in the low-
frequency TFS and the modulated envelopes of high-frequency tones is consistent 
with the underlying physiological mechanisms of neurons in the brainstem path-
ways sub-serving these two cues. Low-frequency binaural neurons in the MSO and 
midbrain (inferior colliculus) are maximally activated by IPDs in the range 45–90° 
(see Grothe et al. 2010 for review). This is consistent with their delay sensitivity 
being generated by largely excitatory inputs from the two ears. Conversely, those 
in the LSO appear to be excited by one ear, and inhibited by the other (Grothe et al. 
2010). Consequently, maximum activity is generated in this (high-frequency) path-
way when the sounds at the two ears are out of phase with each other (here, when 
the signal is switched from 0° to 180°). The IPM-FR, therefore, appears able to 
distinguish between these two pathways based on the preferred IPDs employed to 
evoke the response. This provides a possible means of distinguishing which of the 
binaural pathways is activated in bilateral CI users, as well as a means of objective 
fitting of devices. Work is currently underway to assess the IPM-FR in bilateral CI 
users. The EEG recording of steady-state responses in CI users is made challenging 
by the electrical artefacts created by stimulus pulses, but artefact rejection tech-
niques have been successfully applied for the recording of AM-evoked steady-state 
responses (e.g., Hofmann and Wouters 2010). Such techniques should also be ap-
plicable for the recording of the IPM-FR.
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