220 research outputs found

    Do Clonal Plants Show Greater Division of Labour Morphologically and Physiologically at Higher Patch Contrasts?

    Get PDF
    When growing in reciprocal patches in terms of availability of different resources, connected ramets of clonal plants will specialize to acquire and exchange locally abundant resources more efficiently. This has been termed division of labour. We asked whether division of labour can occur physiologically as well as morphologically and will increase with patch contrasts.We subjected connected and disconnected ramet pairs of Potentilla anserina to Control, Low, Medium and High patch contrast by manipulating light and nutrient levels for ramets in each pair. Little net benefit of inter-ramet connection in terms of biomass was detected. Shoot-root ratio did not differ significantly between paired ramets regardless of connection under Control, Low and Medium. Under High, however, disconnected shaded ramets with ample nutrients showed significantly larger shoot-root ratios (2.8∼6.5 fold) than fully-lit but nutrient-deficient ramets, and than their counterparts under any other treatment; conversely, fully-lit but nutrient-deficient ramets, when connected to shaded ramets with ample nutrients, had significantly larger shoot-root ratios (2.0∼4.9 fold) than the latter and than their counterparts under any other treatment. Only under High patch contrast, fully-lit ramets, if connected to shaded ones, had 8.9% higher chlorophyll content than the latter, and 22.4% higher chlorophyll content than their isolated counterparts; the similar pattern held for photosynthetic capacity under all heterogeneous treatments.Division of labour in clonal plants can be realized by ramet specialization in morphology and in physiology. However, modest ramet specialization especially in morphology among patch contrasts may suggest that division of labour will occur when the connected ramets grow in reciprocal patches between which the contrast exceeds a threshold. Probably, this threshold patch contrast is the outcome of the clone-wide cost-benefit tradeoff and is significant for risk-avoidance, especially in the disturbance-prone environments

    Synthesis and Characterization of Ruthenium Amidinate Complexes as Precursors for Vapor Deposition

    Get PDF
    Three new ruthenium amidinate complexes were prepared: tris(diisopropylacetamidinato)-ruthenium(III), Ru(iPrNC(Me)NiPr)3 4; bis(diisopropyl-acetamidinato)ruthenium(II) dicarbonyl, Ru(iPrNC(Me)NiPr)2(CO)2 5; and bis(ditert- butylacetamidinato)ruthenium(II) dicarbonyl, Ru(tBuNC(Me)NtBu)2(CO)2 6. They have been synthesized and characterized by 1H NMR, TG and X-ray structure analysis. These three complexes were found to be monomeric and air stable. Compound 6 was found to have sufficient volatility and thermal stability for use in chemical vapor deposition (CVD) and atomic layer deposition (ALD) of ruthenium metal films.Chemistry and Chemical Biolog

    Schema theory based data engineering in gene expression programming for big data analytics

    Get PDF
    Gene expression programming (GEP) is a data driven evolutionary technique that well suits for correlation mining. Parallel GEPs are proposed to speed up the evolution process using a cluster of computers or a computer with multiple CPU cores. However, the generation structure of chromosomes and the size of input data are two issues that tend to be neglected when speeding up GEP in evolution. To fill the research gap, this paper proposes three guiding principles to elaborate the computation nature of GEP in evolution based on an analysis of GEP schema theory. As a result, a novel data engineered GEP is developed which follows closely the generation structure of chromosomes in parallelization and considers the input data size in segmentation. Experimental results on two data sets with complementary features show that the data engineered GEP speeds up the evolution process significantly without loss of accuracy in data correlation mining. Based on the experimental tests, a computation model of the data engineered GEP is further developed to demonstrate its high scalability in dealing with potential big data using a large number of CPU cores

    Design and Simulation of Small Space Parallel Parking Fuzzy Controller

    Get PDF
    Based on the nonlinearity and time-variation of automatic parking path tracking control system, we use fuzzy control theories and methods to explore the control rules to improve fuzzy controllers and design an automobile steering controller. Then we build the simulation experiment platform of an automobile in Simulink to simulate the reversing settings of parallel parking. This paper adopts the Mamdani control rules; the membership function is the Gauss function. This paper verifies the fuzzy controller's kinematic model and the advantages of fuzzy control rules. Simulation results show that the design of the controller allows the automobile to stop into the parking space smaller than the space obtained by planning path, and automatic parking becomes possible in the parking plot. The control system is characterized by small tracking error, fast response and high reliability

    Defect-Driven Efficient Selective CO2 Hydrogenation with Mo-Based Clusters

    Get PDF
    Synthetic fuels produced from CO2 show promise in combating climate change. The reverse water gas shift (RWGS) reaction is the key to opening the CO2 molecule, and CO serves as a versatile intermediate for creating various hydrocarbons. Mo-based catalysts are of great interest for RWGS reactions featured for their stability and strong metal–oxygen interactions. Our study identified Mo defects as the intrinsic origin of the high activity of cluster Mo2C for CO2-selective hydrogenation. Specifically, we found that defected Mo2C clusters supported on nitrogen-doped graphene exhibited exceptional catalytic performance, attaining a reaction rate of 6.3 gCO/gcat/h at 400 °C with over 99% CO selectivity and good stability. Such a catalyst outperformed other Mo-based catalysts and noble metal-based catalysts in terms of facile dissociation of CO2, highly selective hydrogenation, and nonbarrier liberation of CO. Our study revealed that as a potential descriptor, the atomic magnetism linearly correlates to the liberation capacity of CO, and Mo defects facilitated product desorption by reducing the magnetization of the adsorption site. On the other hand, the defects were effective in neutralizing the negative charges of surface hydrogen, which is crucial for selective hydrogenation. Finally, we have successfully demonstrated that the combination of a carbon support and the carbonization process synergistically serves as a feasible strategy for creating rich Mo defects, and biochar can be a low-cost alternative option for large-scale applications

    Development of one-step SYBR Green real-time RT-PCR for quantifying bovine viral diarrhea virus type-1 and its comparison with conventional RT-PCR

    Get PDF
    Background Bovine viral diarrhea virus (BVDV) is a worldwide pathogen in cattle and acts as a surrogate model for hepatitis C virus (HCV). One-step real-time fluorogenic quantitative reverse transcription polymerase chain reaction (RT-PCR) assay based on SYBR Green I dye has not been established for BVDV detection. This study aims to develop a quantitative one-step RT-PCR assay to detect BVDV type-1 in cell culture. Results One-step quantitative SYBR Green I RT-PCR was developed by amplifying cDNA template from viral RNA and using in vitro transcribed BVDV RNA to establish a standard curve. The assay had a detection limit as low as 100 copies/ml of BVDV RNA, a reaction efficiency of 103.2%, a correlation coefficient (R2) of 0.995, and a maximum intra-assay CV of 2.63%. It was 10-fold more sensitive than conventional RT-PCR and can quantitatively detect BVDV RNA levels from 10-fold serial dilutions of titrated viruses containing a titer from 10-1 to 10-5 TCID50, without non-specific amplification. Melting curve analysis showed no primer-dimers and non-specific products. Conclusions The one-step SYBR Green I RT-PCR is specific, sensitive and reproducible for the quantification of BVDV in cell culture. This one-step SYBR Green I RT-PCR strategy may be further optimized as a reliable assay for diagnosing and monitoring BVDV infection in animals. It may also be applied to evaluate candidate agents against HCV using BVDV cell culture model

    Development of one-step SYBR Green real-time RT-PCR for quantifying bovine viral diarrhea virus type-1 and its comparison with conventional RT-PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bovine viral diarrhea virus (BVDV) is a worldwide pathogen in cattle and acts as a surrogate model for hepatitis C virus (HCV). One-step real-time fluorogenic quantitative reverse transcription polymerase chain reaction (RT-PCR) assay based on SYBR Green I dye has not been established for BVDV detection. This study aims to develop a quantitative one-step RT-PCR assay to detect BVDV type-1 in cell culture.</p> <p>Results</p> <p>One-step quantitative SYBR Green I RT-PCR was developed by amplifying cDNA template from viral RNA and using <it>in vitro </it>transcribed BVDV RNA to establish a standard curve. The assay had a detection limit as low as 100 copies/ml of BVDV RNA, a reaction efficiency of 103.2%, a correlation coefficient (R<sup>2</sup>) of 0.995, and a maximum intra-assay CV of 2.63%. It was 10-fold more sensitive than conventional RT-PCR and can quantitatively detect BVDV RNA levels from 10-fold serial dilutions of titrated viruses containing a titer from 10<sup>-1 </sup>to 10<sup>-5 </sup>TCID<sub>50</sub>, without non-specific amplification. Melting curve analysis showed no primer-dimers and non-specific products.</p> <p>Conclusions</p> <p>The one-step SYBR Green I RT-PCR is specific, sensitive and reproducible for the quantification of BVDV in cell culture. This one-step SYBR Green I RT-PCR strategy may be further optimized as a reliable assay for diagnosing and monitoring BVDV infection in animals. It may also be applied to evaluate candidate agents against HCV using BVDV cell culture model.</p

    Dual-agonist occupancy of orexin receptor 1 and cholecystokinin A receptor heterodimers decreases G-protein-dependent signaling and migration in the human colon cancer cell line HT-29

    Get PDF
    The orexin (OX1R) and cholecystokinin A (CCK1R) receptors play opposing roles in the migration of the human colon cancer cell line HT-29, and may be involved in the pathogenesis and pathophysiology of cancer cell invasion and metastasis. OX1R and CCK1R belong to family A of the G-protein-coupled receptors (GPCRs), but the detailed mechanisms underlying their functions in solid tumor development remain unclear. In this study, we investigated whether these two receptors heterodimerize, and the results revealed novel signal transduction mechanisms. Bioluminescence and Förster resonance energy transfer, as well as proximity ligation assays, demonstrated that OX1R and CCK1R heterodimerize in HEK293 and HT-29 cells, and that peptides corresponding to transmembrane domain 5 of OX1R impaired heterodimer formation. Stimulation of OX1R and CCK1R heterodimers with both orexin-A and CCK decreased the activation of Gαq, Gαi2, Gα12, and Gα13 and the migration of HT-29 cells in comparison with stimulation with orexin-A or CCK alone, but did not alter GPCR interactions with β-arrestins. These results suggest that OX1R and CCK1R heterodimerization plays an anti-migratory role in human colon cancer cells. [Abstract copyright: Copyright © 2017. Published by Elsevier B.V.
    corecore