43 research outputs found

    Interfacial effect of Cu electrode enhanced energy density of amorphous aluminum oxide dielectric capacitor

    No full text
    In this work, a novel dielectric system of Cu/amorphous aluminum oxide/Pt (Cu/AmAO/Pt) is developed for dielectric capacitor applications. The high breakdown strength (425 MV m−1), high dielectric constant (8.6) and improved leakage current density are achieved due to this effective system. Dielectric capacitors with the structure of Cu/AmAO/Pt demonstrate much higher energy density of 6.9 J cm−3 than that of Au/AmAO (2.9 J cm−3). The enhanced performance of Cu/AmAO/Pt stems intrinsically from the interfacial effect under high electric field. The interfacial effect forms copper oxides and compacts the structure of AmAO, contributing to the improvement of breakdown strength and leakage current density. Anodized copper oxide also makes contribution to the increase of dielectric constant. Moreover, the oxidation mechanism is proposed for further understanding electrochemical behaviors. Based on the extensive applications of Cu in integrated circuits, high-energy-density Cu/AmAO/Pt system promises huge potential for the integrated circuit

    Research Progress on Polymer Solar Cells Based on PEDOT:PSS Electrodes

    No full text
    Solution-processed polymer solar cells (PSCs) have attracted dramatically increasing attention over the past few decades owing to their advantages of low cost, solution processability, light weight, and excellent flexibility. Recent progress in materials synthesis and devices engineering has boosted the power conversion efficiency (PCE) of single-junction PSCs over 17%. As an emerging technology, it is still a challenge to prepare solution-processed flexible electrodes for attractive flexible PSCs. Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising candidates for electrodes due to its high conductivity (>4000 S/cm), excellent transmittance (>90%), intrinsically high work function (WF > 5.0 eV), and aqueous solution processability. To date, a great number of single-junction PSCs based on PEDOT:PSS electrodes have realized a PCE over 12%. In this review, we introduce the current research on the conductive complex PEDOT:PSS as well as trace the development of PEDOT:PSS used in electrodes for high performance PSCs and perovskite solar cells. We also discuss and comment on the aspects of conductivity, transmittance, work-function adjustment, film preparing methods, and device fabrications. A perspective on the challenges and future directions in this field is be offered finally

    Solution-processed solar-charging power units made of organic photovoltaic modules and asymmetric super-capacitors

    No full text
    Organic photovoltaics with the properties of flexibility, portability, and printability are ideal candidates for low-power-consumption electronics such as the Internet of Things under indoor light conditions. In this work, an all solution-processed integrated photocapacitor (IPC) consisting of an organic photovoltaic module (OPVM) and an asymmetric super-capacitor (ASC) is demonstrated. The OPVM poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b ]dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo[1, 2-c:4,5-c ]dithiophene-4,8-dione)] (PBDB-T) : 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2 ,3 d ]-s-indaceno[1,2-b:5,6-b-]-dithiophene (ITIC) with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the top electrode delivers a high power conversion efficiency of 6.7% with a voltage of 4.3 V (1 Sun). The ASC based on PEDOT:PSS and Ti3C2Tx electrodes shows a wide operation window of 1.5 V in the aqueous electrolyte with a high energy density of 28.7 mu W h cm(-2). Consequently, the IPC achieves a high output voltage of 3 V and outstanding overall efficiency of 6.0% (45 000 lx), which shows excellent stability as the solar-charging power unit under room light (500 lx). Synergizing energy harvest and storage in a solution-processed robust, lightweight, low-cost organic IPC enables this solar-charging power unit wide potential applications in low-power-consumption portable electronics.Funding Agencies|Swedish Research CouncilSwedish Research CouncilEuropean Commission [2017-04123]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [200900971]; Knut and Alice Wallenberg FoundationKnut &amp; Alice Wallenberg Foundation [2016.0059]; China Scholarship Council (CSC)China Scholarship Council; Jiaxing Public Welfare Research Program [2019AY11007]</p

    Surface doping of non-fullerene photoactive layer by soluble polyoxometalate for printable organic solar cells

    No full text
    The non-fullerene photoactive layer (PTB7-Th:IEICO-4F) film is first immersed into a PMA solution to induce an effective surface p-type doping. An improved hole-collection and a high PCE of 11.37% was obtained, although the non-fullerene OSCs were without a commonly evaporated MoO3. This surface doping technique is an effective and feasible strategy for the printable electronics technology

    Quantitative structure-retention relationships model for retention time prediction of veterinary drugs in food matrixes

    No full text
    Quantitative structure-retention relationships (QSRR) is a technique used in the prediction of the retention time of compounds based on their structure and chromatographic behavior. In this study, an easy and usable QSRR model was established based on multiple linear regression (MLR) to predict three kinds of illegal additives in food matrixes. For this purpose, 95 drugs were chosen, including a training set of 62 drugs, a test set of 30 drugs, and a real sample set of 3 drugs. The molecular descriptors for each compound were obtained by free softwares of advanced chemistry development (ACD) and toxicity estimation software tool (TEST). After that, the MLR-based QSRR model was established, both internal and external validation was used for validation of this model. The result indicated that the following descriptors have great influence on the predicted retention time: ACDlogP, ALOGP, ALOGP2, Hy, Ui, ib, BEHp1, BEHp2, GATS1m, GATS2m. The correlation coefficient for fitting model revealed a strong correlation between the drug retention time and selected molecular descriptors (R-2 = 0.966). Moreover, the four validation methods (leave-one-out, k-fold cross-validation, test set, and real sample set) indicated the high reliability of this model. In conclusion, this method provided a more suitable and usable model for research work in several branches of analytical chemistry, especially in the field of food safety to improve the ability of retention time prediction for illegal additives. (C) 2018 Elsevier B.V. All rights reserved

    Recensione a PIETRO GIULIO RIGA, Un episodio della fortuna dell\u2019Aretino salmista: le parafrasi di Giovan Francesco Loredano, in La Bibbia in poesia. Volgarizzamenti dei Salmi e poesia religiosa in et\ue0 moderna, a cura di ROSANNA ALHAIQUE PETTINELLI, ROSANNA MORACE, PIETRO PETTERUTI PELLEGRINO, UGO VIGNUZZI. \uabStudi (e testi) italiani\ubb, XXXV (2015), pp. 209-226

    No full text
    Hydroxycinnamic acid amides (HCAAs), diversely distributed secondary metabolites in plants, play essential roles in plant growth and developmental processes. Most current approaches can be used to analyze a few known HCAAs in a given plant. A novel method for comprehensive detection of plant HCAAs is urgently needed. In this study, a deep annotation method of HCAAs was proposed on the basis of ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC HRMS) and its in silico database of HCAAs. To construct an in silico UHPLC-HRMS HCAAs database, a total of 846 HCAAs were generated from the most common phenolic acid and polyamine/aromatic monoamine substrates according to possible biosynthesis reactions, which represent the structures of plant-specialized HCAAs. The characteristic MS/MS fragmentation patterns of HCAAs were extracted from reference mixtures. Four quantitative structure-retention relationship (QSRR) models were developed to predict retention times of mono-trans-HCAAs (aromatic amines conjugates), mono-trans-HCAAs (aliphatic amines conjugates), bis-HCAAs, and tris-HCAAs. The developed method was applied for identifying HCAAs in seeds (maize, wheat, and rice), roots (rice), and leaves (rice and tobacco). A total of 79 HCAAs were detected: 42 of them were identified in these plants for the first time, and 20 of them have never been reported to exist in plants. The results showed that the developed method can be used to identify HCAAs in a plant without prior knowledge of HCAA distributions. To the best of our knowledge, it is the first UHPLC HRMS database developed for effective deep annotation of HCAAs from nontargeted UHPLC HRMS data. It is useful for the identification of novel HCAAs in plants

    Effect of Transcutaneous Vagus Nerve Stimulation at Auricular Concha for Insomnia: A Randomized Clinical Trial

    No full text
    Insomnia inflicts mental burden and decreases physical productivity and affects life quality. Transcutaneous vagus nerve stimulation (ta-VNS) may be an effective treatment option for insomnia. This study aims to evaluate the effect and safety of ta-VNS and compare it with transcutaneous nonvagus nerve stimulation (tn-VNS). A multicenter, randomized, clinical trial was conducted at 3 hospitals in China enrolling 72 insomnia participants from May 2016 to June 2017. Participants were randomly assigned (1 : 1) to receive 40 sessions of ta-VNS or tn-VNS treatment. 63 participants completed the trial. ta-VNS treatment significantly decreased the Pittsburgh Sleep Quality Index score, Epworth Sleepiness Scale score, Flinders Fatigue Scale score, Hamilton Depression Scale score, and Hamilton Anxiety Scale score over 4 weeks compared with those of the baseline. Moreover, it also significantly increased the 36-item Short-Form Health Survey Questionnaire scores compared with that of the baseline. However, it did not show significant differences compared with tn-VNS in changes of primary and secondary outcomes. The incidence of adverse events was low. ta-VNS significantly relieved insomnia over 4 weeks. Moreover, it also alleviated fatigue and improved participants’ quality of life as well as other concomitant symptoms such as depression and anxiety. This trial is registered at Chinese Clinical Trial Registry (http://www.chictr.org.cn) with the registration number: ChiCTR-TRC-13003519
    corecore