100 research outputs found

    Identifying Sneutrino Dark Matter: Interplay between the LHC and Direct Search

    Full text link
    Under R-parity, the lightest supersymmetric particle (LSP) is stable and may serve as a good dark matter candidate. The R-parity can be naturally introduced with a gauge origin at TeV scale. We go over why a TeV scale B-L gauge extension of the minimal supersymmetric standard model (MSSM) is one of the most natural, if not demanded, low energy supersymmetric models. In the presence of a TeV scale Abelian gauge symmetry, the (predominantly) right-handed sneutrino LSP can be a good dark matter candidate. Its identification at the LHC is challenging because it does not carry any standard model charge. We show how we can use the correlation between the LHC experiments (dilepton resonance signals) and the direct dark matter search experiments (such as CDMS and XENON) to identify the right-handed sneutrino LSP dark matter in the B-L extended MSSM.Comment: 5 pages, 3 figure

    Higgs-Higgsino-gaugino induced two loop electric dipole moments

    Get PDF
    We compute the complete set of Higgs-mediated chargino-neutralino two-loop contributions to the electric dipole moments of the electron and neutron in the minimal supersymmetric standard model (MSSM). We study the dependence of these contributions on the parameters that govern CP-violation in the MSSM gauge-gaugino-Higgs-Higgsino sector. We find that contributions mediated by the exchange of WH± and ZA0 pairs, where H± and A0 are the charged and CP-odd Higgs scalars, respectively, are comparable to or dominate over those mediated by the exchange of neutral gauge bosons and CP-even Higgs scalars. We also emphasize that the result of this complete set of diagrams is essential for the full quantitative study of a number of phenomenological issues, such as electric dipole moment searches and their implications for electroweak baryogenesis

    Fixing Two-Nucleon Weak-Axial Coupling L_{1,A} From mu-d Capture

    Full text link
    We calculate the muon capture rate on the deuteron to next-to-next-to-leading order in the pionless effective field theory. The result can be used to constrain the two-nucleon isovector axial coupling L_{1,A} to +/- 2 fm^3 if the muon capture rate is measured to 2% level. From this, one can determine the neutrino-deuteron break up reactions and the pp-fusion cross section in the sun to a same level of accuracy.Comment: replaced by the version appearing in the PR

    A SUSY SO(10) GUT Model with Lopsided Structure

    Get PDF
    The standard model (SM) of elementary particles has been established for more than 30 years and tested by a large number of experiments. However, because of the naturalness problem of the electroweak symmetry breaking scale and a large number of unexplained parameters in SM, physicists have been looking for a more fundamental theory. Supersymmetry (SUSY) and grand unification are two appealing concepts that have been mostly implemented to build candidates for beyond SM theories. SUSY helps to stabilize the scale of electroweak symmetry breaking, and grand unification embeds the SM gauge groups into larger and more fundamental gauge groups. Neutrino oscillations, signaling massive neutrinos, are the first direct evidence of beyond SM physics. A tiny neutrino mass can be elegantly explained by the seesaw mechanism. The neutrino masses from this mechanism are of Majorana type and therefore break the B-L (baryon number minus lepton number) symmetry. A favorable framework of studying neutrino masses and oscillations is the SO(10) grand unification theory (GUT) which naturally accommodates a B-L breaking. The same B-L breaking can also facilitate baryogenesis via a leptogenesis scenario. This provides an interesting correlation between these two pieces of phenomenology. This thesis presents a realistic SUSY SO(10) GUT model with lopsided structure, which generates the correct masses and mixing of neutrinos and produces the right amount of baryon asymmetry. One of the most characteristic features of this model is the lopsided mass matrices structure. We examine observables in B decays that are sensitive to this structure, and find a specific pattern of predictions that can be used to test this type of models

    Bino-driven electroweak baryogenesis with highly suppressed electric dipole moments

    Get PDF
    It is conventional wisdom that successful electroweak baryogenesis in the Minimal Supersymmetric extension of the Standard Model (MSSM) is in tension with the non-observation of electric dipole moments (EDMs), since the level of CP-violation responsible for electroweak baryogenesis is believed to generate unavoidably large EDMs. We show that CP-violation in the bino–Higgsino sector of the MSSM can account for successful electroweak baryogenesis without inducing large EDMs. This observation weakens the correlation between electroweak baryogenesis and EDMs, and makes the bino-driven electroweak baryogenesis scenario the least constrained by EDM limits. Taking this observation together with the requirement of a strongly first-order electroweak phase transition, we argue that a bino-driven scenario with a light stop is the most phenomenologically viable MSSM electroweak baryogenesis scenario

    Deuteron Compton Scattering in Effective Field Theory: Spin-Dependent Cross Sections and Asymmetries

    Full text link
    Polarized Compton scattering on the deuteron is studied in nuclear effective field theory. A set of tensor structures is introduced to define 12 independent Compton amplitudes. The scalar and vector amplitudes are calculated up to O((Q/Λ)2){\cal O}((Q/\Lambda)^2) in low-energy power counting. Significant contribution to the vector amplitudes is found to come from the spin-orbit type of relativistic corrections. A double-helicity dependent cross section Δ1σ=(σ+1−1−σ+1+1)/2\Delta_1 \sigma = (\sigma_{+1-1}-\sigma_{+1+1})/2 is calculated to the same order, and the effect of the nucleon isoscalar spin-dependent polarizabilities is found to be smaller than the effect of isoscalar spin-independent ones. Contributions of spin-independent polarizabilities are investigated in various asymmetries, one of which has as large as 12 (26) percent effect at the center-of-mass photon energy 30 (50) MeV.Comment: 22 pages, 8 figures included, replaced with the version submitted to PR

    Sum Rules and Spin-Dependent Polarizabilities of the Deuteron in Effective Field Theory

    Get PDF
    We construct sum rules for the forward vector and tensor polarizabilities for any spin-SS target and apply them to the spin-1 deuteron. We calculate these polarizabilities of the deuteron to the next-to-leading order in the pionless effective field theory.Comment: 10 pages, figures include

    Drell-Hearn-Gerasimov Sum-Rule for the Deuteron in Nuclear Effective Field Theory

    Get PDF
    The Drell-Hearn-Gerasimov sum rule for the deuteron is studied in nuclear effective field theory. The low-energy theorem for the spin-dependent Compton amplitude f1(ω)f_1(\omega) is derived to the next-to-leading order in low-energy expansion. The spin-dependent photodisintegration cross section σP−σA\sigma^P-\sigma^A is calculated to the same order, and its contribution to the dispersive integral is evaluated.Comment: 8 pages, 2 figure
    • …
    corecore