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Abstract

We construct sum rules for the forward vector and tensor polarizabilities for any dpirget and apply them to the spin-1
deuteron. We calculate these polarizabilities of the deuteron to the next-to-leading order in the pionless effective field theory.
0 2004 Elsevier B.VOpen access under CC BY license.

Low-energy photon scattering on a composite sys- from the photo-production data through a sum rule
tem can be characterized by a host of electromagnetic(0.69+ 0.04 fm) [5].
polarizabilities, many of which depend on the polar- We communicate two sets of results in this Letter.
ization (spin) state of the system. Comparing exper- Firstis the sum rules for the spin-dependent vector and
imental measurements of these polarizabilities with tensor polarizabilities. Because the deuteron binding-
theoretical predictions allows one to learn about the energy is 2.2 MeV, extracting the polarizabilities di-
underlying dynamics of the composite system. In this rectly from Compton scattering is difficult experimen-
Letter, we are interested in tlspin-dependent vector tally. One would need high-intensity, polarized photon
and tensor polarizabilities of the deuteron. The spin- beams at energy of order 1 MeV or less, which are not
independent electric polarizabilityzg of the nucleus available at the present time. (Compton scattering on
has long been a subject of investigation in the litera- the deuteron has been studied in the past and sum rules
ture, and it has been explored extensively in the poten- have been explorel®,7], and recently it has been in-
tial models[1]. More recently, it has been calculated vestigated in effective field theorig8].) One could
in effective field theories with and without explicit scatter a polarized deuteron beam off the Coulomb
pion degrees of freedoij2,3]. Experimentally,xgo field of a heavy nucleus, as @], observing spin-
has been measured through deuteron scattering offdependent effects. However, an easier way might be to
heavy atoms (T0+ 0.05 fm®) [4] and also extracted  extract these polarizabilities from the spin-dependent
photo-production cross sections through sum rules.
The HIGS facility at Duke with photon energy from
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The second set of results is on the effective field Im fJ(O) o;. Obviously for/ =0, one has

= 4
theory (EFT) calculations of the forward spin polariz- "

abilities. A systematic EFT approach to the deuteron f, — Zﬂms), €)
structure and scattering processes has been developed 25 +1 s

in the last few year$10] and has been applied suc-
cessfully to many experimental observables (464

for a review). Here we use the pionless version of the
theory[3] to calculate the vector and tensor polariz-
abilities up to the next-to-leading order. Since all the
counter terms to this order have been fixed from other
processes, there are no free parameters in our predic-
tion.

Before specializing to the spin-1 deuteron case,
we consider the forward scattering of a circularly
polarized photon of positive helicity on a nucleus of
spin S and the magnetic quantum numbeg (we f=fof*-é+ frie* x é .S
choose the direction of photon momentum as the A AD) T A (D) Ak A
quantization axisz). The total number of forward + k- (S@5Pe et )
scattering amplitudes is easily found to be 2S$ whereé is the photon polarization§ is the angular
1 + [S], where[S] denotes the integer part. These momentum operator of the target, agdindicates a
amplitudes arise from the initial deuteron and photon tensor coupling. (For examplé® k)@ - (S® $)@ =
states with the total angular momentum projection (% - S)(k - S) — 52/3 ) A general oddf term has the
S+1,8,(S—1)2, ..., 12 0? for integer nuclear spin,  structurei(S® S ® --- ® $)V) . ((&* x 6 ® k-
and S + 1,5, (S — D?...,(3/2)% (1/2)* for half  k)); an evend term has the structur(eS®S® ®
integer nuclear spin, where the superscripts denote theS)) . (k @ k ® - -- ® k)/)é* - ¢. (If one considers the
multiplicity of the amplitudes. Here we are concerned spin-flip forward amplitudes as well, one has one more
with the forward amplitudes without helicity flip, for  structure(S®S®---® )V . (*ReRE®--- @k
which there are exactly2+ 1. for every evens.) The structures are chosen in the

Let us denote the scattering amplitude far-1) + above way so that the coefficiefits have one to one
A(ms) — y(+1)+A(ms) by £ (0), whered is the correspondence to thé’s in relation (2). With the
scattering angle, and the corresponding cross sectionproportional coefficient fixed, we can write down the
by o s). Then the well-known optical theorem states following relations:

which is just the unpolarized scattering amplitude.
Based on the above relatiq®), a class of sum

rules for scattering amplitude can be establispgd

In this Letter, we want to establish the sum rules for
forward polarizabilities. Therefore, we need to find the
general structures for the forward Compton scattering
amplitudes and define the forward polarizabilities as
coefficients of them. We choose to write down the
scattering amplitude in terms of the following tensor
structures for a general spin target,

Im f(ms)(o) (mg) (1) fo = va

JT
[ 3 .
where k is the center-of-_mass momentum. S_ince fi=- S(S+1) N

fms) ~ Xoms Xms Wherex, is the spin wave function

of the target, we can couple the initial and final spin =~ — s 1 stf(ms), (5)
wave functions into tensors with definite total angular SS+D25+14
momentum, and
- 1
fr=—— | s 3 .

vas+1 R S W T R

X Y (=D)STS(S —msDmg|JO) £, (2) 3.5 1

" TS+ 1(@S—1)(25+3) 25 +1

and a similar relation can be used to defigg % 2(3’"?9 —S(S+ l))f(m5)7 (6)

such that the optical theorem exists between them: o
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and so on.

Because of the crossing symmetry under exchang-
ing of photon four-momentunk* < —k* and
€¢’* <> ¢, all evend amplitudes are even functions of
the photon energy, and all oddJ amplitudes are odd
functions of w. Using the analyticity of thef,, we
write down once-subtracted dispersion relations for
even/,

Ooda)’ Im £ ()

2
fr@)=f10 +=0* | ——5——. @)
V] w wec—w
0
Using the optical theorem, one hi&s7],
w? fa , oy(w)
fJ(w)=fJ(0)+ﬁfdw 72— o2’ (8)

0

which is the basis for various sum rules.
Consider the example of = 0, the low-energy

expansion for the amplitude is
C2° | (weot o)+ ©)
fo= eyl Gl Buo)o’

Substituting the above into the dispersion relation,
we recover the well-known Baldin sum rule for the
averaged cross section,

o0

1
OlE0+,3M0=ﬁ/dw
0

For the special case of the spin-1 deuteron, the sum
rule becomes

1 o0
OlEO+,3MO——2/

where we remind the reader thet” denotes the cross
section for the deuteron in am-state.

Let us review the calculations afgg and B0 in
the pionless effective field theofg,3,12] We remind
the reader that in the pionkegheory, the leading order
effective Lagrangian is

+ D
L=N (1D0+ 2MN)N

— Sy (N PN) T (NT PN)

, o0(@)
12 "

(10)
w

oW 45O 4 5D

11
w/z ’ ( )

N2

— % ) (NT BN)(NT B.N)
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+5—NT(u® + 1 P13)5 - BN

2My
1 1
NTil(2,© — = 2, _ =
+ l|:< ) > + | 2n 5 73
e > > > >
X - s

N

(12)

where N is the nucleon field,P; = t2020;/+/8 and

P, = o2121;/+/8 are the tripletS; and singletsSo
two-nucleon projection_operators, respectively. The
covariant derivative isD = 9 + ieQA with Q =

(1 + t3)/2 as the charge operator ardthe photon
vector potential. @ = (1, + p,)/2 and (Y =

(p — 1n)/2 are the isoscalar and isovector nucleon
magnetic moments in nuclear magnetons. The two-
body coupling constants are

(1SO) 4 1
c L
0= Ty G 1/at)
(SSl) 47 1
Co () =—— ; 13
0 My (n—1v) 13)

where 1 is a renormalization scaleq(S0 —
—23.714 fm is the scattering length in the two-nucleon
singlet So channel andy = /My B = 45.703 MeV
with B = 2.225 MeV the deuteron binding energy.
To the NPLO order, the scalar electric polarizability
3
OlemMN 1+ iz n Myy

is[3,12]
324 |: 3M 3r

where Z; = 1/(1 — ypq) = 1.69 is the deuteron
wave function renormalizationy = 1.764 fm; D, =
—1.51 fm®. Numericallyx zo = 0.6339 fn?’. The mag-
netic polarizability8y0 is suppressed by two orders
of Q-counting relative toagg because of the non-
relativistic dynamics of the deuter¢a],

AED0 =

DP], (14)

oem 16(uV)?
Bmo = T A 27 1-—
32y2My 3
8y My(u)2
_ %AifO)(—B)],

(15)

where A% (= B) = — (4 /My)(1/a™$0) — y)~Lis

the leading-order singlesp scattering amplitude at
energy E = —B. (Note that the above result differs
from [2] by a term proportional t@.(?)2, which is
canceled by the regular part of an omitted diagram
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Fig. 1. Leading-order contribution to the electric tensor polarizabilityhefdeuteron. The small circle deestthe electric current coupling.

The large circle represents tlfe-D mixing interactioncgd)

, which by gauge principle can couple tghoton as in (a). The crossing circles

represent the deuteron interpolating fields. The photon cross diagrams are not shown.

with the triplet S1 bubble chain between the two
photon insertions.) Numerically8yo = 0.067 fn?,
about 10% ofrgg.

Turning to the case of = 2, we have the low-

energy expansion,
fo(@) = (@F2 + Bu2)® + O(a®), (16)
which allows us to write @ = 2 sum rule,
o0
1
ap2+ Bu2 = 522 do' —,2 (17)
0

Specializing to the spin-1 deuteron, the sum rule
becomes,

1 o0
OlE2+,3M2——2/

In the effective theory with pions, the leading contri-
bution comes at the NLO i@-counting from the po-
tential pion exchangg,8]. On the other hand, in the
pionless theory, there is a leading contribution coming
from the two-body operator that couples the trigfet
and tripletD1 channelg§13],

o@D 4 oD
w/2

— 250

. (18)

—T0D csd(NT PIN) Y (NT ORI N),

L= ij,xy

(19)

Where ) = 58y, — djhy /n — D and03" =
—(D*DYPJ + P/ D"D" — D*PIDY — DY PIDY)/A.

ng is related to the asymptotib/S ratio n,4 of the

deuteron (0.0254) throudB]
6v27
C(Sd) - _ - = 20
0 " My =) (20)

The leading-order Feynman diagrams are shown in
Fig. 1, and a straightforward calculation yields,

|_o 3\/§aemnsd My
Opp =—"—""%5 2 -

324 (21)

At the NLO, there are contributions froffig. 2 plus
the correction for wave function renormalization. The
result is that

3V 20emnsa My
QLO+NLO _ emlls 1
Aps T a4 A+ ypa)
~ 3\/_2aemndeN Z4. (22)
32)4

where in the second line we have introducégd =
1/(1—ypq) = 1.69[12]. Numerically, we have g =
—0.068 fn? at this order, which is very close to the re-
sult from the potential pion contributid@]. For com-
pleteness, we quote the greetic tensor polarizability
B2 Which formally comes at RLO [2],

A“f(’)(B)].

However, it is very large numerically, 0.195 $m
because of the large isovector magnetic moment.
(Again, the(119)? dependence in Ref2] should be
absent.)

For odd-J, one can write down a dispersion relation
without subtraction

Myy
21

(23)

o0
Im £ ('
Fr(@) =< / dot DII@) (24)
we—w
0
Again using the optical theorem, one H&s7]
i @)
w ;o ojlw
f/(w)=ﬁ/dww7w,g_wz- (25)
0

For J =1, the scattering amplitude has a low-energy
expansion

Olesz

TSIV
where the first term corresponds to the famous low-
energy theorenil4] with the anomalous magnetic

o+ 2y’ +- (26)



80 X.Ji, Y. Li / Physics Letters B 591 (2004) 76-82

(a) (b)

(c) (d)

D> XS

)

3
Fig. 2. The next-to-leading order contribution to the electric tensor polarizability of the deuteron. The black box represents kﬁé fﬁb.let
The small circle denotes the electric currenupling. The large circle represents thieD mixing interactioncgd). The blank square box

represents the NLO-D mixing vertex:C5® andég'd). The attachment of the different symbab a photon comes from the gauge symmetry.
The crossing circles represent the deuteron intetpa fields. The photon cross diagrams are not shown.

momentk defined asu — 25 [15], wherep is the The relevant Feynman diagrams for the forward
magnetic moment in unit ofi/2Mc. The next term Compton scattering are shown kig. 3. Taking into
defines the forward spin-polarizabilify. Substituting account the crossing symmetry, the result for the
the above intoEq. (25) the first term yields the leading-order spin polarizability is

famous Drell-Hearn—Gasimov (DHG) sum rule,
now extended to target of any spih

Lo _ aem(n'D)? |:1 Myy A( So)( B)

16y

2 17 o (o) MNV @ S)
KemkK ;01 0
e 1 [, , 27 x (14 M0 gl _p )}
452M2 ~ 272 / © T 27) ( (=B)

° aem(4ﬂ(l) -1

whereoy = [3/S(S + 1)(2S + 1)1}, msom. For a T 128/ (30)
discussion about the DHG sum rule for the deuteron, _ _ _
see Ref[7]. The numerical value of at this order is 3.762 ffh

The sum rule for the forward spin polarizability ~The effect of diagram 3(a) on the deuteron hyperfine
splitting has been studied in R¢L6], and our result

reads
~ indicates a much bigger effect from diagram 3(c).
o, 1 , 01(w) 28 At the next-to-leading order, there are contributions
V=524 73 (28) from theC> coupling in the singlet and triplet channels
0
1 1 — +
Specializing to the deuteron, we have L= —Cé 50 (M)é[(NTPi N)
1 0<1>_U< ) x (NT[P,D2+D2P, — 2DP,DIN) +h.c]
= / . (29) o
0 — 5 P g[ (VT )

This is the sum rule potentially useful for extracting
the forward spin polarizability from the polarized
photo-production cross section. (31)

X (NT[P,'Bz-F ‘52Pi — ZBP,'E)]N) + h.C.:I,
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Fig. 3. Leading order contribution to the forward vector polarizabitifydeuteron. The gray circle demstthe magnetic moment coupling, or
3
spin—orbit interaction, or electric coupling Eyg. (12) The chain bubble in (b) includes insertions of both triplet and singlet typégm“(() S0

1
andC(() 50) The crossing circles represent the deuteron interpolating fields. The photon cross diagrams are not shown.

ST T
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Fig. 4. The next-to-leading order contribution to the forward vector polarizability of deuteron. The square black box represent both triplet and
3 1
singlet types ofC5: Cé 51 and Cé 50 The large black dot denotes tlig coupling. The gray circle dened the magnetic moment coupling.

3 1
The chain bubble in (c)—(e) includes insertions of both triplet and singlet typél@:ofé 50 and Cé SO), and that in (f) singlet only. The
crossing circles represent the deuteron intexfiad) fields. The photon cross diagrams are not shown.

where The relevant next-to-ledny order Feynman diagrams
for the Compton amplitude are shownkig. 4. The

C( 50) (1) = 4 ro 1 calculated vector polarizability is
My 2 (4 —1/aC50)2’
D2 172 50
Cé S (1) = 21 pd . (32) JNLO _ aem(uM)2ME Cy 7 (1) (so)( B)
My (u—y) 2(8my)?
with ro = 2.73 fm. There are also contributions from % (M _ 1/a(150))2

the following electromagnetic counter teftv]
( SO)( B)

[ 3y —n _3MNV

£’ =eLi(NT P;N)'(NT PsN)B;. (33) —1/a00  4n
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