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The standard model (SM) of elementary particles has been established for

more than 30 years and tested by a large number of experiments. However, because

of the naturalness problem of the electroweak symmetry breaking scale and a large

number of unexplained parameters in SM, physicists have been looking for a more

fundamental theory. Supersymmetry (SUSY) and grand unification are two appeal-

ing concepts that have been mostly implemented to build candidates for beyond SM

theories. SUSY helps to stabilize the scale of electroweak symmetry breaking, and

grand unification embeds the SM gauge groups into larger and more fundamental

gauge groups.

Neutrino oscillations, signaling massive neutrinos, are the first direct evidence

of beyond SM physics. A tiny neutrino mass can be elegantly explained by the

seesaw mechanism. The neutrino masses from this mechanism are of Majorana type

and therefore break the B − L (baryon number minus lepton number) symmetry.

A favorable framework of studying neutrino masses and oscillations is the SO(10)

grand unification theory (GUT) which naturally accommodates a B − L breaking.



The same B−L breaking can also facilitate baryogenesis via a leptogenesis scenario.

This provides an interesting correlation between these two pieces of phenomenology.

This thesis presents a realistic SUSY SO(10) GUT model with lopsided structure,

which generates the correct masses and mixing of neutrinos and produces the right

amount of baryon asymmetry.

One of the most characteristic features of this model is the lopsided mass

matrices structure. We examine observables in B decays that are sensitive to this

structure, and find a specific pattern of predictions that can be used to test this

type of models.
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Chapter 1

INTRODUCTION

1.1 The Standard Model

There have been discovered, so far, four fundamental interactions in nature.

They include, in the order of increasing strengths, gravity, weak interaction, elec-

tromagnetic interaction, and strong interaction.

The gravity is the earliest studied interaction, yet still the most mysterious

one. It caused the apple to drop on Newton’s head, and governs the structure of

galaxies. It keeps the moon moving around the earth, and the earth around the sun.

Its strength is proportional to masses, and therefore the gravitational interaction

between microscopic particles is significantly weaker than the other three forces.

Electromagnetic interaction is another interaction that we are familiar with.

Most of the physical phenomena in our ordinary life are related to this interaction.

It binds electrons to the nuclei to form atoms, and it binds atoms into molecules. All

the chemical and biological processes are conducted by this interaction. Our feelings

of cold and hot, tastes of sweet and sour, and emotions of happiness and sadness

are all electromagnetic signals in our nervous systems. At microscopic levels, this

interaction should be quantized, leading to the quantum electrodynamics (QED), a

U(1)EM gauge theory, in particle physicists’ jargon.

While the formation of an atom is due to the electromagnetic interaction, the
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formation of the much tinier object — the nucleus — can only be possible by a

much stronger force, the strong interaction. It has taken a long time and a series of

nontrivial discoveries to realize that the strong interaction among hadrons is only

the residual effect of a more fundamental interaction, the quantum chromodynamics

(QCD), which is a SU(3)C gauge theory of more fundamental particles — quarks.

The most remarkable properties of QCD are the asymptotic freedom [1] and quark

confinement — no free quark found in experiments.

The weak interaction is responsible for the processes like decays, fissions, and

fusions of atomic nuclei. Without this interaction, the sun would not be powered

and we would face the most serious energy crisis. This interaction is rather unique.

First, it was found to break the parity maximally [2] — only left-handed fields

participating in the weak interaction. Second, the interactions of QED and QCD

are through the exchange of massless gauge bosons: photons and gluons in the case

of QED and QCD, respectively. The weak interaction, however, was first proposed

as a four-fermion pointlike interaction by E. Fermi [3]. Although it was found later

that this pointlike interaction is only a low-energy effective theory and the exchange

of vector bosons W±, Z0 is indeed involved in the weak interaction, these vector

bosons are massive (their heavy masses, in fact, explain why this interaction is

so weak). The existence of fundamental massive vector particles in the quantum

field theory breaks unitarity and leads to non-renormalizability of the theory, which

indicate the ultraviolet inconsistency.

This problem of weak interaction is tightly related to that it is not a gauge the-

ory, where gauge bosons are guaranteed to be massless by gauge symmetries. This
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suggests that one prospering way of unitarizing the weak interaction and making it

renormalizable is to restore the gauge symmetry at high energy. It was realized by

P. W. Higgs [4] that although there are Goldstone bosons arising from the sponta-

neous breaking of continuous global symmetry [5], these Goldstone boson degrees

of freedom, in the case of spontaneous breaking of gauge symmetry, are “eaten” by

gauge particles and become their longitudinal components. Thus, the spontaneous

breaking of gauge symmetry makes gauge particles massive. At high energy, the

gauge symmetry is restored and the theory behaves well ultravioletly. This is the

Higgs mechanism and has been applied to the case of the weak interaction. The

gauge symmetry SU(2)L × U(1)Y , where the subscript L denotes the left-handed

and the subscript Y denotes the hyper-charge, is assumed to be broken to U(1)EM

by the vacuum expectation value (vev) of the Higgs fields. Three generators of

the SU(2)L × U(1)Y gauge symmetries are broken, and three corresponding gauge

bosons W±, Z0 become massive, while the other gauge boson corresponding to the

unbroken gauge symmetry U(1)EM , i.e. the photon, remains massless. The Dirac

masses of fermions which couple left-handed and right-handed components are for-

bidden before the symmetry breaking since they are not invariant under the gauge

group SU(2)L. The spontaneous breaking of the gauge symmetry SU(2)L × U(1)Y

also generates fermion masses. In the end, all the fermion masses and the W±, Z0

boson masses are proportional to the Higgs vev. This application of Higgs mech-

anism to the case of weak interaction leads to a unified picture of electromagnetic

and weak interaction: they belong to the unbroken and the broken parts of the same

gauge groups SU(2)L×U(1)Y . This is the main point of the standard model (SM),
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in which three of the fundamental interactions are described in the framework of

gauge theory of three gauge groups SU(3)C × SU(2)L × U(1)Y . The SU(3)C de-

scribes the strong interaction. The SU(2)L × U(1)Y , i. e. the electroweak sector, is

the origin of the electromagnetic and weak interactions.

SM is so far the most successful model of elementary particles. Tremendous

amount of experimental data have been found to support it. However, although it is

renormalizable and hence does not manifestly require a ultraviolet completion, SM

still suffers the naturalness problem and has a large number of parameters, and beg

for a more fundamental understanding at high energy.

1.2 Problems of the Standard Model

1.2.1 Hierarchy Problem of Standard Model

There are two fundamental scales in the SM. One is represented by the mass of

proton, or equivalently ΛQCD — the scale at which the running coupling of QCD [1]

becomes non-pertubative, quarks become confined, and chiral symmetry is broken.

This scale is generated through dimensional transmutation from a theory without

any scale at the first place — QCD is formally a conformal theory with quark masses

neglected. This scale, although signalling tremendous difficulties in understanding

the strong interaction at low energy, is perfectly a natural one by itself.

The other scale, which is of totally different type, is represented by the mass of

fundamental fermions, including both quarks and leptons. This scale is associated

with the electroweak symmetry breaking (EWSB). In SM, the EWSB is induced
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by the Higgs mechanism and the scale of it depends on the Higgs potential. The

problem is that the Higgs field is scalar whose quadratic coupling is not protected

by any symmetry in SM and therefore its mass is quadratically divergent. In quan-

tum field theory, the quadratic divergence, like the logarithmic divergence, can be

renormalized by expressing the Greens functions in terms of physical observables

and absorbing the divergence into bare couplings which could be infinite. However,

the existence of a physical cut-off, which could be the grand unification scale or

the Planck scale, makes this quadratical divergence unnatural. This is because one

can only choose bare couplings once to absorb the infinities. A very large physical

cut-off, however, requires the theory to be adjusted accordingly after it is already

renormalized. This adjustment is to make two large scales cancel with each other

with a much smaller difference left. For example, given the grand unification scale

of the order of 1016 GeV, the fine-tuning required to make a electroweak scale of the

order of 100 GeV is one part of 1028!

To solve this problem, there are generally two approaches. One is of the tech-

nicolor type which identifies the Higgs particle as a condensate of fermions. In this

way, the electroweak scale is generated in the similar way as the ΛQCD is generated.

However, although this approach is conceptually appealing, no technicolor model

has ever been constructed to produce right fermion masses and mixing.

The other way of solving this fine-tuning problem is to impose some kind of

symmetry forbidding the scalar mass. The supersymmetry (SUSY) theory is of this

type. The bosonic and fermionic sector are connected by SUSY and therefore the

scalar mass is protected from quadratical radiative correction since the correspond-
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ing fermion mass is protected from it by chiral symmetry.

Not only does it solve the fine-tuning problem of SM, SUSY, by itself, is

conceptually attractive as it offers way to get around [7] the Coleman-Mandula “no-

go” theorem [8] which claims that there is no way to extend the Poincaré group to

include space-time transformation that connects particle states with different spins.

As this is realized by the SUSY algebra, it would be a surprise if nature does not

use it.

Besides solving the fine-tuning problem and being conceptually favorable,

SUSY is an attractive candidate for beyond SM physics in many other aspects:

it provides a dark matter candidate, as the lightest SUSY partner of SM particle

(LSP); the local SUSY requires the inclusion of gravity for consistency; the introduc-

tion of SUSY partner particles (sparticle) modifies the running of gauge couplings

and makes three of them meet at a single point (the grand unification scale), which

persuade physicists to believe in both SUSY and grand unification theory (GUT).

1.2.2 Problems with the Gauge Groups of Standard Model

As the breaking of electroweak gauge symmetry SU(2)L × U(1)Y introduces

the fine-tuning problem of SM, the SM gauge groups have many unjustified aspects:

1. The hyper-charge Y is quantized.

The quantum number of an Abelian group, in contrast to that of a non-Abelian

group, is not required to be quantized. This can be easily seen by looking at

the angular momentum and the momentum as examples. The rotations along
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different directions do not commute with each other and therefore the angular

momentum is quantized. The space-time translations in different directions

commute with each other and therefore momentum can take continuous values.

However, in the case of hyper-charge, the U(1)Y is an Abelian group, yet hyper-

charge is quantized. This fact indicates that the hyper-charge should have a

non-Abelian origin at a more fundamental level.

2. The electron and the proton have exactly the opposite electric charge.

If the electric charges of a electron and a proton are not exactly opposite to

each other, atoms would not be neutral, which would have disastrous conse-

quence. However, the electric charges of particles in SM are due to the specific

assignment of hyper charges, which requires a more fundamental explanation.

3. SM is only accidentally anomaly free.

The anomaly in SM cancels due to the way of the assignment of quantum

numbers. It is not due to the nature of the gauge groups of SM. The fact of

the accidental anomaly cancellation implies that the SM gauge groups might

be embedded in some larger group which is automatically anomaly free because

of the group structure. SO(10) group is such an example because it is a real

group which is automatically anomaly free.

4. Left and right are different in SM.

The gauge group SU(2)L only acts on the left-handed fields. Its right-handed

counterpart SU(2)R is not present in SM. Does nature really prefer left to
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right or is it only true at low energy? Although it is acceptable in terms of

phenomenology, parity breaking is not conceptually satisfying.

5. There are three separate gauge groups instead of one.

The gauge groups of SM appear to be rather complicated. Is it possible to have

a simpler theory at more fundamental level which has only one gauge group

and all the fermions are unified into one multiplet of this unification group?

As mentioned in the last section, the three gauge couplings do meet at one

point at grand unification scale with SUSY. This fact encourages physicists to

believe that these three gauge groups are indeed unified at that scale.

6. There are 19 parameters in SM, whose values are fixed by experimental data.

There are three uncorrelated gauge couplings for SM gauge groups. There are

six quark masses and three charged lepton masses. There are four parameters

in Cabibbo-Kobayashi-Maskawa (CKM) matrix including three mixing angles

and one CP violation phase. In addition, there are two parameters in the

Higgs potential: Higgs vev v and the quartic coupling λ. The remaining one

parameter is the strong CP violation parameter θ. These 19 parameters could

be correlated in a more fundamental theory. In SO(10) GUT, not only are

three SM gauge couplings unified into a single one, but also the masses and

mixing angles in the quark sector and the lepton sector are correlated, further

reducing the number of parameters.

All these problems point in one direction: SM should be embedded into some

GUT. There are many versions of GUT, such as SU(2)L × SU(2)R × SU(4)C [9],
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SU(5) [10], and SO(10) [11]. All of them involve the unification of gauge groups

and the unification of quarks and leptons . Taking the SO(10) as example, all the

15 fermions of SM plus the right-handed neutrino are unified into a single 16 dimen-

sional spinor representation; left and right are on the same footing; the anomaly

automatically cancels since SO(10) is real; the hyper-charge is the linear combi-

nation of IR3 and B − L which are both generators of SO(10) and therefore it is

quantized and the assignment is not arbitrary.

1.3 Various Places to Probe the Beyond Standard Model Physics

The progress of the theoretical physics can never be driven solely by theory

itself. The only way to tell these concepts are relevant is to test them in experiments.

There are many ways to probe the beyond SM physics. For instance,

1. One may observe those heavier particles in a more fundamental theory directly

in colliders such as the Large Hadron Collider (LHC) which is planed to start

to run in 2007.

2. One may see the effects of the beyond SM physics in cosmology, which provides

a unique probe of very high energy physics at the early Universe.

3. One may probe the beyond SM physics through processes sensitive to loops,

like the penguin-dominated channels in B decays.

4. One may see the signature of beyond SM physics through processes revealing

new small violation of accidental symmetries, such as B, L, and B−L, of SM.
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1.3.1 Neutrino Physics

The neutrino oscillations belong to the fourth type of probes discussed above.

They provide the first direct evidence of beyond SM physics in that it violates the

accidental symmetry Le,µ,τ of SM.

Moreover, the neutrino oscillations imply that neutrinos are massive. The av-

erage mass of neutrinos has been constrained from cosmology to be of order 0.05eV

or smaller [12], a scale much lower than the masses of other fermions. This tiny

neutrino mass can be most naturally explained by the seesaw mechanism [13], indi-

cating the Majorana nature of neutrinos [14]. This brings the violation of another

accidental symmetry, B − L, of SM at a very high scale that is close to the grand

unification scale. The B−L, as an accidental symmetry of SM, is anomaly free and

therefore can be gauged. (A more precise statement is that B−L is anomaly free as

a global symmetry in SM and it is anomaly free as a gauged symmetry with right-

handed neutrino added to SM.) In fact, it is one of the gauge symmetries of SO(10)

and SU(2)L×SU(2)R×SU(4)C . When the SO(10) and SU(2)L×SU(2)R×SU(4)C

are broken to SM, this gauge symmetry is broken spontaneously. As a result, these

GUTs provide a natural framework of B−L breaking which is a necessary condition

for the seesaw mechanism to work.

Even if one assumes that neutrinos are actually Dirac particles, whose masses

are the coupling between left-handed and right-handed Weyl spinors, the fact that

there are no right-handed neutrino in SM signifies the involvement of beyond SM

physics in the explanation of neutrino masses. moreover, the SO(10) and SU(2)L×
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SU(2)R × SU(4)C GUTs, being left-right symmetric, require the existence of the

right-handed neutrino. For these reasons, studying neutrino oscillation in the GUT

framework is particularly interesting regardless the Majorana or Dirac nature of

neutrinos.

While it is well motivated to study neutrino physics in the GUT framework,

it is rather nontrivial to do this in practice. The reason is that the lepton sector

and quark sector are correlated in GUT. Like in SM, the fermion masses in GUT

are generated from Yukawa interactions. The Yukawa interactions in GUT are

among the GUT multipletes, which involve both the quark and the lepton fields.

In such a way, the masses of quarks and leptons are related. For example, the

SO(10) operator 16f16f10H , where 16f ’s are fermion fields and 10H is a Higgs field,

contributes to Dirac masses of all the quarks (including both the up-type and the

down-type) and the leptons (including both the charged ones and the neutrinos).

Therefore, the masses and mixing of quarks and leptons are dependent on the same

set of parameters. There are totally 18 fermion masses and mixing angles that

have been measured. They include six quark masses, three charged lepton masses,

four CKM elements, three lepton mixing angles (there is so far only an upper limit

on the reactor mixing angle θ13), and two neutrino mass-squared difference ∆M2
12

and ∆M2
13. A significant question is whether one can construct a realistic GUT

model explaining the masses and mixing in both the quark sector and the lepton

sector in terms of less than 18 parameters. If this goal can be successfully achieved,

it means some nontrivial GUT relations among the quark and lepton masses and

mixing angles are discovered. Given those conceptually attractive properties of
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GUT discussed in the previous section, it is an important task to investigate if the

unification of quarks and leptons can be realized in practice by constructing realistic

GUT models.

1.3.2 Baryogenesis via Leptogenesis

The current observation of the Universe depends on its early history when it

was very hot and thus was described by a more fundamental theory at high energy.

Because of this, cosmology provides a unique probe of beyond SM physics. One of

the puzzles in cosmology is where the baryon asymmetry observed in the Big Bang

nucleosynthesis (BBN) and the cosmic microwave background (CMB) comes from.

It was realized long time ago by Sakharov [15] that, in order to produce the

baryon asymmetry, three conditions have to be satisfied. They include: (1) baryon

number violation; (2) both C and CP violation; (3) out of thermal equilibrium

condition.

There are many scenarios of baryogenesis satisfying these three conditions.

Initially, it was thought that this can be realized by the baryon number violating

decays of heavy particles in GUT [16, 17]. But later, this scenario was ruled out

after it was realized that the baryon asymmetry produced in such way would be

completely washed out by the in-equilibrium sphaleron process [18, 19].

With the GUT scenario of baryogenesis abandoned, the next candidate is to

generate the baryon asymmetry in the sphaleron process itself. Since the out of

equilibrium condition has to be satisfied, this baryogenesis, referred as electroweak
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baryogenesis, can only happen in the bubble wall of the electroweak phase transition.

The requirements of strong first order phase transition and enough CP violation rule

out this scenario in SM and only leave small possibility in SUSY.

Since the electroweak baryogenesis is difficult, the scenario of baryogenesis via

leptogenesis [20] becomes a very attractive candidate. In this scenario, the right-

handed neutrinos, whose Majorana masses violate the B − L number, decay and

produce lepton number asymmetry. This lepton number asymmetry is converted

to baryon number asymmetry by the sphaleron process in such a way that B − L

number is conserved. The baryogenesis via leptogenesis scenario requires the B−L

breaking at very high energy, which is also a necessary condition for explaining

the small neutrino masses in terms of seesaw mechanism. This makes both neutrino

physics and baryogenesis via leptogenesis tightly related to the GUT since it provides

a natural scheme of B − L breaking.

Due to the connection among the baryogenesis via leptogenesis, neutrino physics,

and GUT, it is important to investigate if such a GUT model can be constructed to

explain fermion masses and mixing, including the neutrino sector, and at the same

time produce right amount of baryon asymmetry.

1.3.3 Low Energy Precision Test of SUSY GUT Model

As mentioned earlier, SUSY helps to realize the gauge coupling unification

which encourages physicists to trust both SUSY and GUT. Therefore, when an

SO(10) GUT model is constructed, one would like to supersymmetrize it and make
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it a SUSY GUT model.

While one certainly wishes to see those sparticles directly in the collider, one

may also detect their effects indirectly in the quantum loops. These heavy sparticles

in loops could induce new flavor violations and CP violations.

In SM, the flavor violation is only in the quark sector and all the CP violations

can be explained by a single CP violation phase in the CKM matrix [21]. Going

beyond the SM, one expects new flavor and CP violations in the new physics above

the electroweak scale MEW . Constraints of lepton flavor violations such as µ → eγ,

τ → µγ, and τ → eγ have been established in experiments, with the constraint

on the first one (µ → eγ) being the most restrictive. Constraints of various flavor

violations and flavor-changing/conserving CP violations in the quark sector have also

been established from experiments. Although the hadronic uncertainties make the

precision test in quark sector more complicated, there exist some golden channels,

such as Bd → φKs and Bd → η′Ks that attract lots of interest. At quark level,

these processes involve b → sss̄, where the SM contribution starts at the loop level

(penguin diagrams) [22]. These penguin dominated processes have attracted a lot

of experimental and theoretical efforts in hope to see the signature of beyond SM

physics.

With a SUSY GUT model that fits all the fermion masses and mixing and

produces right amount of baryon number asymmetry, it would be interesting to

investigate its impact on the low-energy precision tests.
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1.4 What is the Thesis about

In this thesis, we discuss an SO(10) GUT model with lopsided structure and

various phenomenological aspects of it, including the fermion masses and mixing,

baryogenesis via leptogenesis, and precision tests in B physics.

In constructing an SO(10) GUT model for fermion masses and mixing, the

first problem that one faces is how to produce large neutrino mixing and small

quark mixing simultaneously. The lopsided structure of SO(10) solves this problem

in an elegant way. However, the realistic SO(10) GUT models based on the lop-

sided structure in the literature suffer the fine-tuning problem. We construct a new

model with lopsided structure avoiding the fine-tuning problem. The new model

explains 18 measured fermion masses and mixing angles in terms of 13 parameters.

Moreover, being rather different from the previous model with lopsided structure

in the literature, our prediction of reactor neutrino mixing θ13 is sizable and within

the reach of the next generation of reactor neutrino experiments.

In the baryogenesis via leptogenesis scenario, the right-handed neutrino decays

and produces the lepton asymmetry which is converted to the baryon asymmetry by

the sphaleron process. The lepton asymmetry, however, gets washed out by inverse

decays and scattering processes. The washout effect can not be too strong in order

for enough lepton asymmetry to be left. We investigate in detail how much lepton

number asymmetry can be produced and how much of them gets washed out and

find that right baryon asymmetry can be produced in our model.

The lopsided structure which characterizes our model implies that there is
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a large right-handed down-type quark mixing associated with the large neutrino

mixing in the 2-3 sector. This could induce large b → s transition in the SUSY

context. We study observables SφKS
and Sη′KS

which are indirect CP violations in

the Bd → φKS and Bd → η′KS decays and find that predictions from our model with

lopsided structure show a specific pattern. This pattern can be used to differentiate

the models with lopsided structure from others.

The thesis is organized as follows. In chapter 2, we discuss the basics of the

SUSY and GUT, especially the SO(10) GUT. Chapter 3 is devoted to a detailed

discussion of the construction of SO(10) GUT model with lopsided structure. In

chapter 4, we present the study of the baryogenesis via leptogenesis in our model.

In chapter 5, the investigation of the signature of this SO(10) GUT model in penguin

dominated processes in B decays is presented. Chapter 6 presents the conclusion.
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Chapter 2

BASICS OF SUPERSYMMETRY AND GRAND UNIFICATION

THEORY

2.1 SUSY Basics

SUSY is a symmetry of space-time. It generalizes the Poincaré group to the

super-Poincaré group by introducing the SUSY generators Qα and Q∗
β that satisfy

the anticommutation rules

{Qα, Qβ} = {Q∗
α̇, Q∗

β̇
} = 0,

{Qα, Q∗
β̇
} = σ̄µ

αβ̇

∂

∂xµ

. (2.1)

These generators act like the annihilation operator and creation operator of a one-

dimensional fermionic harmonic oscillator. They change the spin of a state by 1/2,

thus establishing a connection between bosonic and fermionic degrees of freedom.

The basic rules of writing down the Lagrangian of SUSY invariant action and

soft SUSY breaking terms are presented in this section. This part is written without

referring to a specific gauge group. The minimal supersymmetric standard model

(MSSM) at low energy and the SUSY GUT at high energy follow straightforwardly

by identifying the gauge group as those of SM and GUT, respectively.
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2.1.1 SUSY Invariance and Soft Breaking

There are two kinds of supermultiplets that are used to construct the SUSY

invariant action. One is the chiral supermultiplet and the other is the vector su-

permultiplet. The SUSY transformation rules tell that the space-time integration

of the supermultiplet component with the highest dimension is SUSY invariant and

therefore can be used to construct the action. The reason is simply that the SUSY

transformation of highest dimensional components has to involve space-time deriv-

ative ∂µ acting on a lower dimensional component, which becomes the surface term

after space-time integration and hence vanishes.

The chiral supermultiplet (Wess-Zumino supermultiplet) has the component

fields φ(x), ψ(x), and F (x), which describe a complex scalar, a Weyl spinor, and an

auxiliary complex scalar, respectively. These components form the chiral superfield

Φ(x, θ) = φ + θψ(x) +
1

2
θθF (x), (2.2)

where the Grassmann variable θ is introduced. The dimension of this chiral su-

perfield is assigned to be 1 and the dimension of θ is −1
2
. The dimension of each

component is easily computed to be [φ] = 1, [ψ] = 3
2
, and [F ] = 2. The scalar

field F (x) is the auxiliary field needed for the SUSY algebra to close off-shell, i.e.

without referring to the equation of motion. In the end, the equation of motion for

F always relates it back to the scalar field φ.

The product of chiral superfields with opposite chirality Φ∗Φ is a real superfield

((Φ∗Φ)∗ = Φ∗Φ). The free lagrangian of chiral superfield is obtained by taking the
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highest dimensional component (the D term) of this real superfield

LWZ
0 =

∫
d2θ̄d2θΦ∗Φ = −∂µφ

∗∂µφ− iψ†σ̄µ∂µψ + F ∗F. (2.3)

On the other hand, the products of chiral superfields with the same chirality, such

as the terms in the superpotential

W =
1

2
mijΦiΦj +

1

6
yijkΦiΦjΦk, (2.4)

are still chiral superfields. The lagrangian of SUSY invariant action that describes

the Yukawa interactions among chiral superfields is obtained by taking the highest

dimensional component (the F term) of the above chiral superfield

LY ukawa =

∫
d2θW + H.C.. (2.5)

The higher-order terms involving more than three chiral superfields are non-renormalizable

operators and are omitted here.

The quadratic term in the superpotential gives

∫
d2θΦiΦj = φiFj + φjFi − ψiψj, (2.6)

while the cubic term gives

∫
d2θΦiΦjΦk = φiφjFk + φiFjφk + Fiφjφk − φiψjψk − φjψiψk − φkψiψj. (2.7)

The kinetic term and the superpotential together yield the equation of motion for

the auxiliary field F

Fi = −
(

∂W

∂φi

)∗
. (2.8)
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Thus the scalar potential is

VF (φ, φ∗) = −
(

F ∗
i Fi + F ∗

i

(
∂W

∂φi

)
+

(
∂W

∂φi

)∗
Fi

)
= F ∗

i Fi

= m∗
ikm

kjφ∗iφj +
1

2
miny∗jknφiφ

∗jφ∗k +
1

2
m∗

iny
jknφ∗iφjφk

+
1

4
yijny∗klnφiφjφ

∗kφ∗l. (2.9)

The vector supermultiplet has the component fields Aµ(x), λ(x), D(x), which

describe a 4-vector, a 2 component Weyl spinor, or equivalently, a 4-component

Majorana spinor, and an auxiliary scalar, respectively. For simplicity, the Abelian

gauge field is taken as an example here, while the extension to the non-Abelian case

is straightforward.

In the non-SUSY case, a spin-one massless particle is described by a Lorentz 4-

vector, which has non-physical degrees of freedom — the gauge degrees of freedom.

Similarly, in the SUSY case, the vector supermultiplet is embedded into a real

superfield (V ∗ = V )

V (x, θ, θ̄) = A(x)− i(θψ(x) + θ̄ψ†(x))− iθθC(x)− iθ̄θ̄C∗(x) + iθ̄σµθAµ(x)

+ θθθ̄λ†(x) + θ̄θ̄θλ(x) + θ̄θ̄θθD(x), (2.10)

which involves the gauge degrees of freedom A(x), ψ(x), and C(x). These gauge

degrees of freedom can be eliminated by choosing the Wess-Zumino gauge (A(x) = 0,

ψ(x) = 0, C(x) = 0). As a result, the SUSY transformation on the vector superfield

is accompanied by a gauge transformation

V (x, θ, θ̄) → V (x, θ, θ̄) + i(Λ(x, θ)− Λ∗(x, θ̄)), (2.11)

where the Λ(x, θ) is a chiral superfield.
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Just like the real superfield can be constructed in terms of chiral superfields,

the chiral superfield can also be constructed in terms of vector superfields

W(x, θ) = −iλ(x) +

[
D(x)− i

2
σµνFµν(x)

]
θ + θθσ̄µ∂µλ

†A(x), (2.12)

which transforms under the SUSY transformation as

W(xµ, θ) →W(xµ + ξ†σµθ, θ + ξ), (2.13)

and is invariant under gauge transformation. This is the generalized gauge field

strength, from which the kinetic term of the gauge field can be constructed

Lgauge =
1

4

(∫
d2θWW + H.C.

)
= −1

4
FµνF

µν − iλ†σµ∂µλ +
1

2
D2. (2.14)

The interactions between the chiral and vector supermultiplets are obtained

by making the kinetic term of the chiral supermultiplet gauge invariant. Under the

local gauge transformation

Φ(x, θ) → eiξΛ(x,θ)Φ(x, θ), (2.15)

where Λ(x, θ) is a chiral superfield, the kinetic term Φ∗Φ is not invariant

Φ∗Φ → eiξ(Λ−Λ∗)Φ∗Φ. (2.16)

The gauge invariant kinetic term can be obtained as

Lgauge−int. =

∫
d2θ̄d2θΦ∗egV Φ

= −(Dµφ)∗(Dµφ)− iψ†σ̄µDµψ + F ∗F

−
√

2g
[
φ∗ψλ + λ†ψ†φ

]
+ gφ∗φD (2.17)
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where Dµ = ∂µ + igAµ is the covariant derivative. The terms in the last line are

new in SUSY. The last term, together with the 1
2
D2 in Lgauge, gives the equation of

motion of D

D = −gφ∗φ. (2.18)

Thus D term contribution to the scalar potential is

VD(φ, φ∗) = −
(

1

2
D2 + gφ∗φD

)
=

1

2
D2 =

1

2
g2(φ∗φ)2 (2.19)

To summarize, the lagrangian of a SUSY invariant action is

L =
1

4

(∫
d2θWW + H.C.

)
+

∫
d2θ̄d2θΦ†egV Φ

+

∫
d2θ

[(
1

2
mijΦiΦj +

1

6
yijkΦiΦjΦk

)
+ H.C.

]
, (2.20)

and the scalar potential from this lagrangian is

V (φ, φ∗) = F ∗F +
1

2
D2. (2.21)

The masses for bosons and fermions in a supermultiplet have to be exactly

equal. Such a mass relation is not observed in reality and therefore SUSY has to be

broken. In order not to destroy the ultraviolet properties of SUSY that solve the

hierarchy problem, the SUSY has to be softly broken. There are many scenarios of

SUSY soft breaking and all of them should lead to the soft terms in the low-energy

effective Lagrangian

Lsoft = −1

2
(Mλλλ + H.C.)− (m2)i

jφ
j∗φi

−
(

1

2
bijφiφj +

1

6
aijkφiφjφk + H.C.

)
, (2.22)
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where the first and second terms in the first line are gaugino masses and scalar

masses in the chiral supermultiplet, respectively. These terms create a difference

among the masses of different components of a supermultiplet and break SUSY

manifestly. The terms in the second line are couplings among scalar components of

chiral supermultiplets, which are allowed by gauge invariance if the corresponding

terms in the superpotential are allowed.

2.1.2 RG Running in SUSY

In this section, the one-loop renormalization group (RG) equations for the

SUSY invariant terms and soft terms are presented. The complete two-loop RG

equations can be found in Ref. [23]

The RG equation of the gauge coupling is

d

dt
g =

1

16π2
βg, (2.23)

with

βg = g3[S(R)− 3C(G)] (2.24)

where the Dynkin index S(R) for representation R is

TrR(tAtB) ≡ S(R)δAB, (2.25)

and C(G) is the Casimir invariant C(R) of the adjoint representation. The Casimir

invariant C(R) for the representation R is

(tAtA)j
i ≡ C(R)δj

i . (2.26)
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Specialized to the adjoint representation, one has C(G)δAB = fACDfBCD with fABC

the structure constant of the group.

The RG equation of the gaugino mass is

d

dt
M =

1

16π2
βM (2.27)

with

βM = g2[2S(R)− 6C(G)]M. (2.28)

The superpotential is not renormalized due to the holomorphicity. The run-

ning of Yukawa coupling is due to the wave-function renormalization of the chiral

superfields, which gives rise to the anomalous dimensions

d

dt
Y ijk =

1

16π2
Y ijpγk

p + (k ↔ i) + (k ↔ j), (2.29)

where the anomalous dimension

γk
p =

1

2
YipqY

ipq − 2δj
i g

2C(i). (2.30)

The RG equation of the soft trilinear term aijk is

d

dt
aijk =

1

16π2
βa

ijk, (2.31)

where

βa
ijk =

1

2
aijlYlmnY

mnk + Y ijlYlmna
mnk

−2(aijk − 2MY ijk)g2C(k) + (k ↔ i) + (k ↔ j). (2.32)

The RG equation of the soft scalar mass is

d

dt
(m2)j

i =
1

16π2
βm2

j
i , (2.33)
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where

βm2
j
i =

1

2
YipqY

pqn(m2)j
n +

1

2
Y ipqYpqn(m2)n

i + 2YipqY
jpr(m2)q

r

+aipqa
jpq − 8δj

i MM †g2C(i) + 2g2tA
j

iTr[tAm2]. (2.34)

2.2 GUT Basics

As briefly discussed in Chapter 1, the problems of SM gauge groups imply that

SM should be embedded into GUT. The first attempt in this direction was made

by Pati and Salam [9] in their SU(2)L × SU(2)R × SU(4)C model (G(224) model),

where quarks and leptons are unified — a lepton is the fourth color of a quark.

The discovery of neutrino oscillation strongly supports this type of extension of SM

since the right-handed neutrino, a singlet of SM, has to be present in G(224) model

to form a complete representation, together with the right-handed charge leptons

and the right-handed quarks. This model, although has both SU(2)L and SU(2)R

gauge groups, does not have to be left-right symmetric since the gauge couplings gL

and gR could be different. It was proposed in Refs. [24, 25, 26] to make this model

left-right symmetric by requiring the couplings of SU(2)L and SU(2)R to be equal,

gL = gR. In this way, there are only two gauge couplings in the left-right symmetric

G(224) model.

Another model was proposed by Georgi and Glashow [10] in the same year.

This model unifies three gauge groups of the SM into a single rank-4 group SU(5)

and therefore there is only one gauge coupling. However, the left-handed and right-

handed fields are intrinsically different in this type of grand unification models and
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hence parity cannot be a good symmetry at GUT scale. Another disadvantage of

the SU(5) model is that, unlike the G(224) model, the right-handed neutrino, as a

singlet of SU(5), does not occur naturally.

It was first noted by Georgi, Fritzsch, and Minkowski [11] that the SO(10) can

serve as the grand unification group. The groups of both the G(224) model and the

SU(5) model are subgroups of SO(10), and therefore, the SO(10) model exhibits nice

features of both models. Moreover, the SO(10) goes beyond them in the following

aspects:

1. The SO(10) model is automatically parity-conserving in the gauge interaction

sector, whereas G(224) model can only have this as an assumption and SU(5)

model does not conserve parity.

2. In the SO(10) model, all 16 fermions, including the right-handed neutrino,

are embedded into a single 16-dimensional spinor representation, whereas in

G(224) model, the fermions are divided into left and right sectors, and in

SU(5) model, 16 fermions belong to 1, 5, and 10 representations.

3. The SO(10) group, being a real group, is automatically anomaly free.

4. Because of the single gauge group, the SO(10) model imposes more constraints

on the quark and lepton masses and mixing, and therefore is more predictive

than the G(224) and the SU(5) models.

In the following, we first briefly discuss the G(224) and SU(5) models, and

then focus on the SO(10) model in more details.
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2.2.1 Left-right Symmetric Models G(224) and G(221)

The G(224) = SU(2)L×SU(2)R×SU(4)C model is the first that assumes the

existence of right-handed neutrinos. Two key ideas of this model purely based on

aesthetic reasons are:

1. the quark-lepton unification based on extending the SU(3)C of SM to SU(4)C

which has the lepton as the fourth color of the quark;

2. the left-right symmetry based on extending the SU(2)L in SM to SU(2)L ×

SU(2)R. (The exact left-right symmetry relies on the equality of two gauge

couplings gL = gR).

To realize the above two ideas, the right-handed neutrino has to be postulated

since it fits together with the three right-handed up-type quarks to form a complete

multiplet of SU(4)C and it fits together with the right-handed charged lepton to

form a doublet of SU(2)R.

By including the right-handed neutrino, 15 fermions in each family (we take the

first family as example here) are extended to 16 fermions which form two complete

representations of G(224):

FL,R =




u1 u2 u3 νe

d1 d2 d3 e




L,R

(2.35)

where the subscripts 1 ∼ 3 denote three colors. FL and FR transform as (2,1,4) and

(1,2,4), respectively, under G(224).

The G(224) model provides a natural explanation for the hyper-charge Y =

I3R + (B −L)/2, which is assigned arbitrarily in SM. The hyper-charge is naturally
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quantized since I3R and B − L are generators of non-Abelian groups SU(2)R and

SU(4)C , respectively. The electric charge QEM = I3L +Y = I3L +I3R +(B−L)/2 is

completely fixed and those of the proton and electron are guaranteed to be opposite

in this assignment.

Alternatively, one could extend the SM to becoming left-right symmetric with-

out quark-lepton unification. The left-right symmetric model SU(2)L × SU(2)R ×

U(1)B−L (G(221)) [24, 25, 26] was proposed in this spirit. The G(221) model is

the minimal model that restores left-right symmetry. Probing the physics associ-

ated with the right-handed sector has drawn a lot of effort [27] since the model was

proposed.

In G(221) model, fermions are:

lL ≡




ν

e




L

: (2, 1,−1); lR ≡




ν

e




R

: (1, 2,−1);

q1,2,3
L ≡




u

d




1,2,3

L

: (2, 1,
1

3
); q1,2,3

R ≡




u

d




1,2,3

R

: (1, 2,
1

3
); (2.36)

where the representation labels refer to (SU(2)L, SU(2)R, U(1)B−L). It is easy to

check that the assignment of U(1) charge as the B −L number, −1 for leptons and

1/3 for quarks, gives exactly the correct hyper charge in SM. Here the right-handed

neutrino is required not only because it is a component of SU(2)R doublet, but also

because the B − L gauge symmetry of G(221) must be anomaly free.
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The Higgs sector, in the simplest form, includes the bi-doublet φ = (2, 2∗, 0)

and the triplets ∆R = (1, 3, 2) and ∆l = (3, 1, 2). The bi-doublet transforms as

φ → ULφU †
R, (2.37)

and the triplets transform as

∆R → UR∆RU †
R,

∆L → UL∆LU †
L. (2.38)

The explicit forms of φ and ∆R are

φ =




φ0
1 φ+

1

φ−2 φ0
2


 , (2.39)

and

∆R =




∆+
R/
√

2 ∆++
R

∆0
R ∆+

R/
√

2


 , (2.40)

with the superscript denoting the electric charge QEM = I3L + I3R + (B − L)/2.

Since the electric charge is not spontaneously broken, the vev of the bi-doublet

has to be

〈φ〉 =




v1 0

0 v2


 , (2.41)

and the vev of the triplet is

〈∆R〉 =




0 0

V 0


 . (2.42)

The 〈∆R〉 breaks the SU(2)L × SU(2)R × U(1)B−L to SU(2)L × U(1)Y , which is

further broken to U(1)EM by the vev of φ.
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The left-right symmetric model G(221) is the minimal model that introduces

the right-handed neutrino and realizes the seesaw mechanism naturally. This can

be seen straightforwardly from the Yukawa couplings

L = gl̄RφlL + g′l̄Rφ̃lL + f q̄RφqL + f ′q̄Rφ̃qL + hl̃cR∆RlR + H.C. (2.43)

where

φ̃ ≡ τ2φ
∗τ2 =




φ0∗
2 −φ+

2

−φ−2 φ0∗
1


 (2.44)

and

l̃cR ≡ lcRiτ2 =

(
ec

R −νc
R

)
(2.45)

The vev of ∆R, which breaks both SU(2)R and U(1)B−L, induces a Majorana

mass term for the right-handed neutrino:

LMajorana = hV (νc
RνR + H.C.). (2.46)

On the other hand, the neutrino Dirac mass is induced from the vev of φ

LDirac = (gv1 + g′v∗2)ν̄RνL + H.C., (2.47)

which is the scale of the Dirac masses of other fermions.

In terms of Majorana fields ν = νL + νc
L and N = νR + νc

R, the Dirac and

Majorana masses can be put together in the following form:

L =
1

2

(
ν N

)



0 (gv1 + g′v∗2)

(gv1 + g′v∗2) hV







ν

N


 + H.C.. (2.48)
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Assuming the SU(2)R and U(1)B−L are broken at very high energy scale V À v1, v2,

the two mass eigenvalues are

m1 = −(gv1 + g′v∗2)
2/(hV );

m2 = hV. (2.49)

As a result, one of the two Majorana neutrinos is very heavy and the other is highly

suppressed by the ratio (gv1 + g′v∗2)/(hV ). This suppression provides a natural

explanation why the neutrino mass is so light compared with charged leptons and

quarks. This is called the seesaw mechanism. We omit the discussion of the type II

seesaw mechanism, in which the vev 〈∆L〉 is suppressed by 〈φ〉/〈∆R〉 according to

the Higgs potential.

2.2.2 SU(5) Model

In contrast to the left-right symmetric models, the SU(5) model goes in the

direction of gauge group unification. It is the minimal semisimple group that unifies

the three gauge groups of SM.

The 8+3+1 = 12 generators in SM are embedded into the (N2−1)|N=5 = 24

generators λi (i = 1 ∼ 24) of SU(5), which are traceless 5 × 5 hermitian matrices.

In a commonly used convention, the first 8 generators λi (i = 1 ∼ 8) are identified

as the generators of SU(3)C (Gell-Mann matrices), the λ21,22,23 are identified as

generators of SU(2)L (Pauli matrices), the λ24 is identified as the SM hyper-charge,
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which takes the following form:

λ24 =
2√
15




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −3/2 0

0 0 0 0 −3/2




. (2.50)

The remaining 12 generators are

λ9 =




0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0




λ10 =




0 0 0 −i 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0

0 0 0 0 0




λ11 =




0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0




λ12 =




0 0 0 0 −i

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0



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λ13 =




0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0




λ14 =




0 0 0 0 0

0 0 0 −i 0

0 0 0 0 0

0 i 0 0 0

0 0 0 0 0




λ15 =




0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0




λ16 =




0 0 0 0 0

0 0 0 0 −i

0 0 0 0 0

0 0 0 0 0

0 i 0 0 0




λ17 =




0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0




λ18 =




0 0 0 0 0

0 0 0 0 0

0 0 0 −i 0

0 0 i 0 0

0 0 0 0 0




λ19 =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0




λ20 =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i

0 0 0 0 0

0 0 i 0 0




(2.51)
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The 15 fermions in SM are in representations 5̄ and 10 of SU(5):

ψ5̄ =




dc
1

dc
2

dc
3

e

−ν




L

; ψ10 =




0 uc
3 −uc

2 u1 d1

−uc
3 0 uc

1 u2 d2

uc
2 −uc

1 0 u3 d3

−u1 −u2 −u3 0 ec

−d1 −d2 −d3 −ec 0




L

(2.52)

It is straightforward to see why 15 fermions are embedded in such a way by looking

at the SU(3)C , SU(2)L , and U(1)Y contents of 5̄ and 10. Since 5 is identified as

(3, 0) + (0, 2) under SU(3)C × SU(2)L, we know that

5̄ = (3̄, 0) + (0, 2̄) (2.53)

where

3̄ =




dc
1

dc
2

dc
3




(2.54)

(the reason that it is the dc instead of uc is obvious by looking at the SM hyper-

charge) and

2̄ = iτ2




νL

eL


 =




eL

−νL


 . (2.55)

Similarly the 10 of SU(5) can be obtained as antisymmetric tensor of two 5’s.

It is useful to use the notation 5 = ψα, 5̄ = ψα with α = 1 ∼ 5. In the explicit

form of the generators, it is easy to see that the first three indices α = 1, 2, 3 are

the color indices under SU(3)C , while the last two indices α = 4, 5 are the indices

under SU(2)L. Thus we have 10 = ψ{αβ}, where the {αβ} means the α and β are
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anti-symmetrized. From different combinations of α and β, it is easy to assign the

quarks and leptons in the specific form shown in Eq. (2.52).

In the minimal scenario, the SU(5) is broken to SU(3)C ×SU(2)L×U(1)Y by

the vev of Higgs field Σ24 of the adjoint representation, which should be a singlet of

SU(3)C × SU(2)L and carry no U(1)Y hyper-charge. The only choice is

〈Σ24〉 =




2/3 0 0 0 0

0 2/3 0 0 0

0 0 2/3 0 0

0 0 0 −1 0

0 0 0 0 −1




V. (2.56)

The breaking of the SM group is induced by the vev of fundamental Higgs field H5

〈H5〉 =




0

0

0

0

v




. (2.57)

In the above minimal Higgs scenario, the fermion masses are generated from

the Yukawa couplings with H5

L = f ij(ψαβ
10 )i(ψ5̄α)jH5

∗
β + hijεαβγδρ(ψ

αβ
10 )i(ψ

γδ
10)jH

ρ
5 , (2.58)

where the i, j = 1, 2, 3 are family indices and the α, β, γ, δ, ρ are SU(5) indices.

While the second Yukawa coupling hij only gives the masses of up quarks, the first

Yukawa coupling f ij gives masses to both the down-type quarks and the charged

35



leptons. In fact, f ij yields equal masses for down-type quarks and charged leptons

at the GUT scale

me = md,

mµ = ms,

mτ = mb. (2.59)

Including the running effect, the last relation, referred as the b−τ unification, is well

satisfied. However, the first two equations are badly violated by the experimental

data. Therefore, the fermion masses require an extended Higgs sector, which is also

demanded by the proton decay experiments, since the minimal SU(5) model predicts

a decay rate larger than the experiment bound [28].

The right-handed neutrino, a singlet of SU(5), needs not to be present in

the SU(5) model. One must extend SU(5) to SU(5) × U(1)X in order to have

the right-handed neutrino as a necessary element of the model. The anomaly free

conditions for U(1)3
X and SU(5)2U(1)X triangle diagrams require the introduction

of singlet of SU(5) with the U(1)X charge assigned to be +5. A linear combination

of U(1)X and a diagonal generator of SU(5) gives the B − L. The breaking of

U(1)B−L induces a Majorana mass term for the right-handed neutrino. While the

U(1)B−L global symmetry is not violated anomalously in SM, the U(1)B−L gauge

symmetry is anomaly free only with the right-handed neutrino present. Therefore,

the introduction of right-handed neutrino is intrinsically related to the U(1)B−L

gauge symmetry. In SU(5) × U(1)X model, U(1)B−L is introduced as combination

of U(1)X and a diagonal SU(5) generators. In contrast, in the left-right symmetric
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models discussed in the last section and the SO(10) model in the next section, the

U(1)B−L gauge symmetry is naturally introduced in the first place.

2.2.3 SO(10) GUT

The SO(10) group is a rank 5 group, while the rank of the SU(3)C×SU(2)L×

U(1)Y is 4. The extra diagonal generator of SO(10) is the B − L, whose breaking

is tightly related to neutrino masses. The B − L breaking must be realized when

the SO(10) is broken to SM. Thus, the SO(10) model provides natural framework

of studying neutrino masses. On the other hand, since the SO(10) group contains

the G(224) group and the SU(5) group as the maximal subgroup, the SO(10) model

provides much stronger constraints on the relations of masses and mixing of quarks

and leptons. This makes it highly nontrivial to build realistic SO(10) models. We

will postpone the discussion of building realistic SO(10) models to the next Chapter,

and focus on the basic aspects of SO(10) in this section.

We follow the Refs. [29, 30] for this part of discussion.

2.2.3.1 Clifford Algebra

Starting with a set of operators χi and χ†i with i = 1 ∼ N that satisfy the

anticommutation relations:

{χi, χ
†
j} = δij,

{χi, χj} = 0, (2.60)
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it can be shown that the operators T i
j defined as

T i
j = χ†iχj (2.61)

satisfy the algebra of U(N) group

[T i
j , T

k
l ] = δk

j T
i
l − δi

lT
k
j . (2.62)

On the other hand, the operator Γµ with µ = 1 ∼ 2N defined as

Γ2j−1 = −i(χj − χ†j),

Γ2j = (χj + χ†j), j = 1 ∼ N, (2.63)

satisfy the anticommutation rule

{Γµ, Γν} = 2δµν (2.64)

and thus form a Clifford algebra. The generators of the SO(2N) group can be

constructed in terms of Γ’s

Σµν =
1

2i
[Γµ, Γν ]. (2.65)

The Σµν can also be written in terms of χi and χ†i

Σ2j−1,2k−1 =
1

2i
[χj, χ

†
k]−

1

2i
[χk, χ

†
j] + i(χjχk + χ†jχ

†
k),

Σ2j,2k−1 =
1

2
[χj, χ

†
k] +

1

2
[χk, χ

†
j]− (χjχk − χ†jχ

†
k),

Σ2j,2k =
1

2i
[χj, χ

†
k]−

1

2i
[χk, χ

†
j]− i(χjχk + χ†jχ

†
k). (2.66)

2.2.3.2 Spinor Representation

While the tensor representations of SO(2N) group are simple to construct, the

spinor representations are more complicated. The easiest way to obtain the spinor
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representations is to explicitly construct it for the Γ’s in the Clifford algebra [30].

This can be done by iterative construction. For N=1, the Γ matrices can be chosen

as

Γ
(N=1)
1 = τ1 =




0 1

1 0


 ,

Γ
(N=1)
2 = τ2 =




0 −i

i 0


 .

(2.67)

To go from N to N+1, the Γ(N+1)’s are constructed as

ΓN+1
i =




Γ
(N)
i 0

0 −Γ
(N)
i


 for i = 1 ∼ 2N,

ΓN+1
2N+1 =




0 1

1 0




ΓN+1
2N+2 =




0 −i

i 0


 . (2.68)
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The generators of SO(2N) defined in terms of Γ’s as in Eq. (2.65) are obtained

correspondingly as

Σ
(N+1)
ij =




Σ
(N)
ij 0

0 Σ
(N)
ij


 , i, j = 1− 2N

Σ
(N+1)
i,2N+1 = i




0 Γ
(N)
i

−Γ
(N)
i 0


 , i = 1− 2N

Σ
(N+1)
i,2N+2 =




0 Γ
(N)
i

Γ
(N)
i 0


 , i = 1− 2N

Σ
(N+1)
2N+1,2N+2 =



−1 0

0 1


 . (2.69)

By constructing the 2N × 2N matrices for generators of SO(2N) group, the spinor

representation of dimension 2N is explicitly constructed. Since the ΓFIVE matrix

constructed as

ΓFIVE = (−i)N(Γ1Γ2...Γ2N) (2.70)

anticommutes with all the Γ’s, the 2N dimensional spinor representation of SO(2N)

group is reducible. To recover irreducible representations, one can apply the opera-

tors (1+ΓFIVE) and (1−ΓFIVE) to project out the “right-handed” and“left-handed”

spinor representations, respectively. In the following, we denote the s-dimensional

right-handed spinor by s+, and s-dimensional left-handed spinor by s−.

In order to obtain the invariant by coupling two spinors, it is necessary to

introduce the charge-conjugation operator. Under the group transformation, the
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spinors transform as

δψ = iεµνΣµνψ,

δψ† = −iεµνψ
†Σµν ,

δψT = iεµνψ
T ΣT

µν . (2.71)

Thus, the ψT does not transform as the conjugate spinor of SO(2N). The charge-

conjugation operator B of SO(2N) group is defined to satisfy

B−1ΣT
µνB = −Σµν , (2.72)

thus

δ(ψT B) = −iεµν(ψ
T B)Σµν . (2.73)

With B, the invariant of SO(2N) can be made in terms of ψB and ψ, such as

ψBCΓµψφµ, ψBCΓµντψφµντ , where φµ and φµντ are tensor representations of SO(2N)

and C is the charge-conjugation operator of Lorentz spinors. The simplest example

ψBCψ, although invariant under SO(2N), is identically zero.

It is often helpful to construct the space of 2N -dimensional spinor represen-

tation as the direct product of N 2-dimensional spinors, |ε1ε2...εN〉, where εi = ±.

The Γ matrices are then

Γ2k−1 = 1× 1× 1...× τ1 × τ3 × τ3...× τ3

Γ2k = 1× 1× 1...× τ2 × τ3 × τ3...× τ3 (2.74)

where 1 denotes the unit matrix and it appears k − 1 times and τ3 appears N − k

times. The ΓFIVE matrix takes the form

ΓFIVE = τ3 × τ3...× τ3 (2.75)
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with τ3 appearing N times. Obviously, the ΓFIVE acting on the spinor |ε1ε2...εN〉

gives

ΓFIVE|ε1ε2...εN〉 =

(
N∏

i=1

εi

)
|ε1ε2...εN〉. (2.76)

Thus
∏N

i=1 εi = +1 for the right-handed spinor and
∏N

i=1 εi = −1 for the left-handed

spinor. Taking the N = 5 case as an example, the | + + + ++〉 is a right-handed

spinor and | − −−−−〉 is a left-handed spinor. Flipping even number of signs of ε

of a spinor leads to one with the same chirality, while flipping odd number of signs

leads to a spinor with opposite chirality.

In this explicit notation, the charge-conjugation operator takes the form

B = iτ2 × iτ2 × ...× iτ2, (2.77)

with N iτ2 matrices. Obviously, the charge-conjugation operator acting on the spinor

|ε1ε2...εN〉 flips all the signs of ε’s. For SO(2N) with even N, the left-handed and

right-handed spinors are self-conjugate. For odd N, like SO(10), the left-handed and

right-handed spinors are conjugate of each other.

2.2.3.3 How SU(N) is Embedded into SO(2N)

It is quite instructive to study how the SU(N) is embedded into SO(2N), since

the SM groups are all unitary.

The U(N) group involves transformations on N-dimensional complex vectors a

and b with the inner product ΣN
i=1b

∗
i ai invariant. Each N-dimensional complex vector

can be decomposed as two N-dimensional real vectors, aj = xj + iyj, bj = x′j + iy′j.

The transformation of U(N) group leaves both real and imaginary part of ΣN
i=1b

∗
i ai
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invariant. Therefore one has both

ΣN
j=1(x

′
jxj + y′jyj), (2.78)

and

ΣN
j=1(x

′
jyj − y′jxj), (2.79)

invariants. On the other hand, the two N-dimensional real vectors can be combined

together to obtain one 2N-dimensional real vector

v =




x

y


 . (2.80)

The SO(2N) group is defined to have the invariant inner product

ΣN
j=1(x

′
jxj + y′jyj). (2.81)

Comparing Eq. (2.78), Eq. (2.79) and Eq. (2.81), it is obvious that the U(N)

group is more restricted than the SO(2N) group. Thus it is sensible to consider

embedding of the U(N) group in the SO(2N) group. Moreover, the 2N-dimensional

vector representation of SO(2N) can be decomposed into N and N̄ of SU(N) which

correspond to x + iy and x− iy, respectively.

Γµ forms a vector representation of SO(2N) and the linear combinations χ and

χ† are N and N of SU(N), respectively. The N(2N − 1) generators of SO(2N) are

antisymmetrized combinations ((N + N) × (N + N))A. Taking the N=5 case as

example, the antisymmetrized combinations (5 × 5)A and (5̄ × 5̄)A are 10 and 10

under SU(5), respectively; the antisymmetrized combination (5×5)A decomposes to

1 (singlet) and 24 (adjoint representation) under SU(5). In terms of χi and χ†i , the 10
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and 10 are χiχj and χ†iχ
†
j (i 6= j), respectively; 1 is Σ5

i=1χ
†
iχi and 24 is (χ†iχj−trace).

The singlet is the generator of U(1)X in the reduction SO(10) → SU(5)× U(1)X .

This decomposition of SO(2N) generators to SU(N) multiplets helps to under-

stand the decomposition of SO(2N) spinor to multiplets of SU(N). The generators

of U(N) have one raising and one lowering operators. Besides these, the other gen-

erators of SO(2N) have two lowering or two raising operators. This means that the

components of a SU(N) multiplet have the same number of + and −. For example,

the |++−−+〉 and |++−+−〉 are components of the same SU(5) multiplet. The

SO(2N) generators that do not belong to SU(N) change the number of “ + ” and

“− ” by 2. Denoting an SU(N) multiplet by the number of “ − ”, k, as [k], we get

the following decomposition of right-handed and left-handed spinors

s+ → [0] + [2] + [4] + ... ,

s− → [1] + [3] + [5] + ... . (2.82)

For example, the 16-dimensional left-handed spinor of SO(10) is the sum of 1, 10,

and 5̄ in SU(5), which corresponds to [5], [3], and [1], respectively.

2.2.3.4 Identify Fermions as Spinors

The 16 fermions, including the 15 of SM and the right-handed neutrino, form

the 16-dimensional spinor representation of SO(10). In the following, we discuss

how these 16 fermions are identified as components of the 16-dimensional spinor of

SO(10).

Since we know the quantum numbers of each fermion under the gauge groups of
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SM, we shall study how the components of the spinor carry these quantum numbers

of SM. The SO(10) can be decomposed into the product of two orthogonal groups

SO(6) × SO(4). We choose the convention of letting the SO(6) acting on the first

6 vector indices and SO(4) acting on the last 4 vector indices. The SU(3)C is

embedded into SO(6) and the SU(2)L into SO(4).

For SO(6), the 22-dimensional right-handed spinor 4+ consists of | + ++〉,

|+−−〉, | −+−〉, and | − −+〉. Under SU(3)C , it decomposes as

4+ → [0] + [2] = 1 + 3̄ (2.83)

where 1 and 3̄ are the singlet and the conjugate of the fundamental representation

of SU(3)C , respectively. Obviously, the singlet 1 is | + ++〉, and the 3̄ consists of

| + −−〉, | − +−〉, and | − −+〉. The left-handed spinor 4− consists of | − −−〉,

|+ +−〉, |+−+〉, and | −++〉. Under SU(3)C , it decomposes as

4− → [3] + [1] = 1 + 3 (2.84)

where 1 and 3 are the singlet and the fundamental representations of SU(3)C , re-

spectively. Obviously, the singlet 1 is | − −−〉, and the fundamental representation

3 consists of | + +−〉, | + −+〉, and | − ++〉. As expected, the charge-conjugation

operator B which flips all the ± signs connects 4+ and 4−.

On the other hand, the decomposition of SO(4) spinor into SU(2)L represen-

tations is more subtle than the case of SO(6). It is well know that there are two

ways of embedding SU(2) into SO(4). One is the “magnetic minus electric”

τk ⇔ εijkσij − σk4, i, j, k = 1, 2, 3, (2.85)
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while the other is ”magnetic”

τk ⇔ εijkσij i, j, k = 1, 2, 3, (2.86)

It turns out [30] that the right way is “magnetic minus electric”, so that the right-

handed 2+ and left-handed 2− decompose as

2+ → [0] + [2] = 1 + 1

2− → [1] = 2 (2.87)

where 1 and 2 are singlet and doublet of SU(2)L, respectively. Each of the 2+ and

2− is conjugate to itself. Obviously, the two singlets of SU(2)L in 2+ are |+ +〉 and

| − −〉, and the doublet in 2− consists of |+−〉 and | −+〉.

The left-handed spinor 16− of SO(10), expressed in terms of left-handed and

right-handed spinors of SO(6) and SO(4), is

16− = 4+2− + 4−2+. (2.88)

Given 4+, 4−, 2+, and 2− expressed in the explicit notation |ε1ε2ε3〉 and |ε4ε5〉, one

can easily identify the 16 left-handed fermions as the components of 16-dimensional

spinor 16− as

d1 = |+−−+−〉; d2 = | −+−+−〉; d3 = | − −+ +−〉;

u1 = |+−−−+〉; u2 = | −+−−+〉; u3 = | − −+−+〉;

d̄1 = |+ +−++〉; d̄2 = |+−+ ++〉; d̄3 = | −+ + ++〉;

ū1 = |+ +−−−〉; ū2 = |+−+−−〉; ū3 = | −+ +−−〉;

e− = |+ + + +−〉; ν = |+ + +−+〉;

e+ = | − − −++〉; νc = | − − −−−〉. (2.89)
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The various U(1) charges can be read directly from the explicit expression of

fermions. The U(1)X in the SU(5)× U(1)X decomposition of SO(10) is

X = σ12 + σ34 + σ56 + σ78 + σ910 (2.90)

= τ3 × 1× 1× 1× 1 + 1× τ3 × 1× 1× 1 + ... + 1× 1× 1× 1× τ3,

which gives Σ5
i=1εi when acting on spinor |ε1ε2ε3ε4ε5〉. The commonly used normal-

ization is X = 1
5
Σ5

i=1εi. The U(1)B−L is embedded into the SU(3)C × U(1)B−L

decomposition of SO(6), therefore it appears quite similar to U(1)X , with the only

difference being that the indices are restricted to be i = 1 ∼ 3 instead of i = 1 ∼ 5.

Therefore we have

B − L =
1

3
(ε1 + ε2 + ε3). (2.91)

Similarly, the hypercharge is

Y

2
= −1

4
(ε4 + ε5) +

1

6
(ε1 + ε2 + ε3), (2.92)

and the electric charge is

Q = −1

2
ε4 +

1

6
(ε1 + ε2 + ε3). (2.93)

Obviously, the B − L, Y/2, and X are linearly dependent

B − L = X +
4

5

(
Y

2

)
. (2.94)

As in the SM, the fermion masses arise from Yukawa couplings of fermions to

Higgs bosons. The vev of Higgs fields that are responsible for the spontaneous gauge

symmetry breaking can also induce fermion masses. The most general Yukawa cou-

plings that are responsible for fermion masses take the form ψiBCΓµψjφ
µ,
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ψiBCΓµΓνΓτψjφ
µντ , and ψiBCΓµΓνΓτΓδΓρψjφ

µντδρ, where i and j are family in-

dices and µ, ν, τ , δ, and ρ are SO(10) vector indices. The φµ, φµντ , and φµντδρ could

be fundamental Higgs fields or composite Higgs fields. In the case that φµ, φµντ ,

and φµντδρ are fundamental, the operators are renormalizable, while in the case that

they are composite (these vector indices are carried by more than one Higgs field),

the operators are non-renormalizable ones.

The reason that only odd number of Γ matrices are allowed is because the

total number of raising and lowering operators (χ†i and χi) must be even, and the

charge-conjugation operator already has odd number of them. Due to the anti-

commutation rule between fermion fields, it is easy to see that the family indices i

and j are symmetric in operators ψiBCΓµψjφ
µ and ψiBCΓµΓνΓτΓδΓρψjφ

µντδρ, and

anti-symmetric in ψiBCΓµΓνΓτψjφ
µντ . This symmetry property is manifest in the

case that φµ, φµντ , and φµντδρ are fundamental Higgs fields. On the other hand,

in the case of non-renormalizable couplings such as 16i16j16H16H , the symmetry

property is not manifest, since two 16Hs can be coupled to form any one of these

three tensors.
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Chapter 3

SO(10) GUT MODEL BUILDING

As shown in Chapter 1, many problems and puzzles of SM can be elegantly

solved and explained in the framework of GUT, especially the SO(10) GUT. But so

far, everything is still at the conceptual level. If GUT is indeed a correct idea, it

should be tested by experiments.

The fermion masses and mixing, although showing a interesting pattern, are

merely inputs in SM. One of the important features of GUT is that the quarks and

the leptons are tightly correlated. Hence one of the best places of testing the idea

of GUT is to check if realistic GUT models can be constructed to explain masses

and mixing of both quarks and leptons.

Among all the fermions, the neutrino is rather unique. In SM, while all the

other fermions have both left-handed and right-handed components, the neutrino has

only left-handed component; while all the other fermions are massive, the neutrino is

massless. The discovery of neutrino oscillations has opened up a fascinating window

for physics beyond the SM. Experimental data on the neutrino mass differences and

mixing help to constrain various theoretical models of new physics.

Assuming three light flavors, the lepton mixing is described by the Pontecorvo-
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Maki-Nakagawa-Sakata (PMNS) matrix [31]

UPMNS =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13




×diag(eiφ1 , eiφ2 , 1) (3.1)

where cij ≡ cosθij and sij ≡ sinθij. The unitary matrix UPMNS is characterized by

three mixing angles (θ12, θ13, θ23) plus three CP-violating phases if assuming neutri-

nos are Majorana fermions. The atmospheric and accelerator neutrino experiments

[32, 33, 34, 36] have determined θ23, which is often referred as atmospheric angle

θ23 ≡ θatm, and mass splitting ∆m2
atm, at 3σ,

sin22θatm > 0.87,

1.4× 10−3eV2 < ∆m2
atm < 3.3× 10−3eV2. (3.2)

The θ12, usually referred as solar angle θ12 ≡ θsol, has been measured by the solar

and reactor neutrino experiments, with an even better precision [35, 36, 37].

0.70 < sin22θsol < 0.94,

7.1× 10−5eV2 < ∆m2
sol < 8.9× 10−5eV2. (3.3)

These results have already facilitated elimination of a large class of neutrino mass

matrix models in the literature. The CHOOZ reactor experiment has discovered

that sin22θ13, if non-zero, should be smaller than 0.1 [38]. The next generation

of neutrino experiments under proposal aims to push the limit to sin2 2θ13 ∼ 0.01

[39, 40], which undoubtedly will reveal a great deal about the mechanism of neutrino

mass generation.
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If small neutrino masses are assumed to arise from the seesaw mechanism [13],

the first thing one recognizes from the present data is that the seesaw scale (the scale

where the B − L symmetry is broken) must be substantially high. This strongly

suggests that the seesaw scale may be connected with one of the leading ideas

for new physics beyond the standard model, i.e., supersymmetric GUT according

to which all forces and matter unify at a truly short distance scale corresponding

to an energy of order 1016 GeV. Moreover, as discussed in Chapter 1, the most

important ingredient of the seesaw mechanism is the B − L breaking which can be

naturally realized in the framework of SO(10) GUT. Therefore, neutrino oscillation

is a suitable testing ground of GUT physics.

This Chapter is devoted to the SO(10) GUT model building which aims to

explain the masses and mixing of both quarks and leptons, including neutrinos. It

starts with a general discussion to motivate the introduction of lopsided structure.

Following that, it presents the details of an SO(10) GUT with lopsided structure.

3.1 Motivation for Lopsided Structure

The SO(10) gauge symmetry is spontaneously broken by the Higgs vevs to

SU(3)C × SU(2)L × U(1)Y , then further to SU(3)C × U(1)EM . The second step

of the breaking is induced by the vev of a vector representation 10. However, the

scheme of the first step breaking is not unique.

Since the SO(10) is a rank 5 group (SM is rank 4) with the extra diagonal

generator B − L, the breaking of SO(10) to SM requires the breaking of B − L
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symmetry. In the framework of SO(10) GUT, there are two choices of Higgs fields

to accomplish this — an antisymmetric 5-index tensor 126 or a spinor 16. Whichever

Higgs field is used, it generates the heavy seesaw scale — the scale of Majorana mass

of right-handed neutrinos. These two alternatives of Higgs field are distinguished in

numerous aspects. Using 126, its vev breaks B−L by two units and thus leaves the

matter parity unbroken, however the unified gauge coupling blows up and becomes

non-pertubative above the GUT scale. The 16 vev breaks the B − L by one unit

and therefore breaks the matter parity. A number of models utilizing these two

classes of Higgs have been constructed [41, 42, 43, 44, 45, 46, 47, 49, 50, 51]. While

most of these models are successful in fitting to the experimental data of masses

and mixing angles of leptons and quarks, they predict quite different values for

the poorly-known neutrino mixing angle θ13. Majority of models [41, 42, 43] with

high-dimensional Higgses tend to yield θ13 close to the current experimental upper

bound, and majority of those with low-dimensional Higgses [44, 45, 46, 47, 49, 50, 51]

predict a small θ13. Thus it appears that θ13 might be an excellent observable to

differentiate between the two classes of SO(10) models.

We will concentrate on the model using a pair of spinors 16 and 16. In this way

of breaking SO(10) to SM, the vev of 16 is in the direction of right-handed neutrino.

Apparently, this vev breaks both I3R and B−L and provides the necessary ingredient

of the seesaw mechanism.

The breaking of SO(10) to SM requires the presence of an adjoint represen-

tation 45 and/or a symmetric second order tensor representation 54, in addition to

spinors 16 and 16. It has been shown [52] that a minimal scheme of breaking the
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SO(10) to SM involves a single adjoint representation 45 plus some 16 and 16 pairs.

In the framework of SO(10), the colored partners of the Higgs SU(2)L weak-

doublet need to be super heavy whereas the weak-doublet itself is light. This

doublet-triplet spitting can be most naturally realized by the Dimopoulos-Wilczek

mechanism [53]. The idea of Dimpopoulos-Wilczek mechanism is based on the ob-

servation that the color-triplet has B−L = ±2/3 and weak-doublet has B−L = 0.

Therefore, in the coupling 10H45H10H , the vev of adjoint 45 in the direction of

B − L will make the color-triplet components heavy, and leave the weak-doublet

component light. Hence, the vev of adjoint Higgs 45 is constrained to be in the

direction of B − L.

Given the set of Higgs fields involving 10H , 16H , 16H , and 45H , various oper-

ators associated with fermion masses can be constructed. These operators involve

two fermion spinors 16i, with i = 1, 2, 3 the family index. In general, each of these

operators gives masses to all the quarks and the leptons. For instance, the simplest

operator, which is the only renormalizable operator in this set, is 16i16j10H . (Notice

that, for simplicity, the charge-conjugation operators B and C are omitted from now

on.) This single operator generates masses to both up-type and down-type quarks

and both charged leptons and neutrinos (of Dirac type) in the coherent pattern

(taking i = j = 3 as example)

mt = mDirac
ντ

,

mb = mτ . (3.4)

The other operators have higher dimension. They are not renormalizable and should

53



be considered as effective operators of a more fundamental theory. As an example,

two fermion spinors and two Higgs spinors can be coupled together 16i16j161H162H .

The 161H and 162H could be the same Higgs field or the different ones. Depending

on how these spinors are coupled, this operator can produce masses to quarks and

leptons with variant patterns.

The first step of building the SO(10) GUT model is to have a clear picture of

the pattern of fermion masses and mixing. In fact, the masses of down-type quarks

and charged leptons are observed to have the following approximate relations at the

GUT scale [54]

mb ' mτ , (3.5)

ms ' 1

3
mµ, (3.6)

md ' 3me. (3.7)

The first relation is the well known b−τ unification, which can be naturally realized

in SO(10) GUT. The operator 16316310H leads to it as discussed above. With this
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operator alone, the mass matrices of fermions are

U =




0 0 0

0 0 0

0 0 1




MU ,

D =




0 0 0

0 0 0

0 0 1




MD,

N =




0 0 0

0 0 0

0 0 1




MU ,

L =




0 0 0

0 0 0

0 0 1




MD, (3.8)

where U , D, N , and L denote the Dirac mass matrices of the up-type quark, the

down-type quark, the neutrino, and the charged lepton, respectively.

The second mass relation ms ' 1
3
mµ also appears natural from the SO(10)

group structure. The vev of the adjoint representation 45 Higgs is in the direction

of B − L direction. Notice that the B − L is −1 for leptons and 1/3 for quarks.

Therefore, the operator involving the 45H tends to generate the masses of leptons

three times heavier than the masses of quarks. Thus it seems that one can get the

relation ms ' 1
3
mµ by putting 2-2 elements to mass matrices of D and L. However,

the operator involving 45H is (16i16j)12010H45H , where two fermion spinors are cou-
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pled to a 3-index tensor 120. This operator generates antisymmetric mass matrices.

It can only give off-diagonal elements to D and L. Taking family indices i and j of

the operator (16i16j)12010H45H to be 2 and 3, respectively, one has

U =




0 0 0

0 0 ε/3

0 −ε/3 1




MU ,

D =




0 0 0

0 0 ε/3

0 −ε/3 1




MD,

N =




0 0 0

0 0 −ε

0 ε 1




MU ,

L =




0 0 0

0 0 −ε

0 ε 1




MD. (3.9)

However, this form of mass matrices is not exactly what we want. In fact, by

diagonalizing the mass matrices, one has ms ' 1
9
mµ instead of ms ' 1

3
mµ. Thus,

although the SO(10) group structure can potentially lead to the lepton mass three

times larger than the quark mass, it requires additional elaboration. This puzzle is

left here and will be revisited when discussing how to generate different mixing in

the quark and the lepton sector.

The third relation md ' 3me seems to be in contradiction to the SO(10)
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group structure. However, this relation can be realized based on the second relation

ms ' 1
3
mµ. For simplicity, let us concentrate on the 1-2 sector of D and L. Assuming

the 2-2 elements can be made to satisfy the relation ms ' 1
3
mµ, then one can get the

relation md ' 3me by leaving 1-1 element empty and putting 1-2 and 2-1 elements

nonzero

D(12) ∝




0 a

b 1


 ,

L(12) ∝




0 a′

b′ 3


 . (3.10)

After diagonalizing D and L, one has the mass of the electron and the down-type

quark as me = a′b′/3 and md = ab, respectively. Evidently, as far as the product ab

is equal to the product a′b′, the mass relation md ' 3me follows naturally.

In summary, both the down-type quarks and the charged leptons show a hier-

archical mass pattern, and there exist empirical relations between their masses for

each family. Two of these mass relations can be realized naturally. On the other

hand, there is no obvious numerical relation between masses of up-type quarks and

neutrinos. This is expected if one assumes the neutrino mass is of Majorana type.

The CKM matrix for the quark mixing and the PMNS matrix for the lepton

mixing are rather different, especially in the 2-3 sector. The 2-3 mixing in the CKM

matrix is described by

Vcb ' 0.04, (3.11)

which is very small. However, the 2-3 mixing in the PMNS matrix, measured from
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the atmospheric and accelerator neutrino experiments, is very large

sin22θatm > 0.87 (3.12)

at 3σ, with the central value to be maximum sin22θatm = 1.

This difference is not expected. First, the hierarchical pattern of mass eigen-

values tends to be associated with small mixing angles, which is indeed the case in

the quark sector. Second, it is very hard to reconcile this big difference between the

quark and the lepton sector in the unification scheme.

To see how this puzzle can be naturally explained in the framework of SO(10)

GUT, it is helpful to see what the CKM and PMNS mixing matrices mean first. The

Dirac mass matrices U , D, and L are diagonalized by two unitary transformations

U and V , acting on left-handed and right-handed fields, respectively

Û = V †
UUUU ,

D̂ = V †
DDUD,

L̂ = V †
LLUL, (3.13)

and the Majorana mass matrix of the left-handed neutrino is diagonalized by one

unitary transformation acting on the left-handed field

m̂ν = UT
ν mνUν . (3.14)

The mixing matrices describe the mismatch between mass eigenstates of upper and

lower components of the weak-doublet, which are left-handed fields

UCKM = U †
DUU ,

UPMNS = U †
LUν . (3.15)

58



On the other hand, the right-handed transformations VU,D,L are not directly observ-

able. (They are observable indirectly in the quantum loops in the SUSY context as

will discussed in the Chapter 5.)

Since the quark mixing and the lepton mixing involve left-handed fields only,

there emerges one natural way of explaining the small quark mixing and the large

lepton mixing in the quark-lepton unified scheme. The idea is that, although the

quarks and the leptons are unified in the framework of GUT, the direct connection

might exist only between the quark field and the lepton field with opposite chirality.

In this way, it is the mixing of right-handed quark fields that is associated with

the mixing of left-handed leptons, and vice versa. As a result, the large mixing of

left-handed leptons in the PMNS matrix indicates the large mixing of right-handed

quarks, which is not directly observable, on the other hand, the small mixing of

left-handed quarks in the CKM matrix indicates the small mixing of right-handed

leptons, which is again not directly observable.

Let us check if the connection between the quarks and the leptons of opposite

chirality can be realized in GUT. Obviously, this is not true in the left-right sym-

metric model G(224), where the quark and the lepton fields of the same chirality are

unified. However, this is indeed the case in the left-right asymmetric model of SU(5),

where it is the charge-conjugate of the right-handed down-type quarks that sit to-

gether with the left-handed lepton doublet in the 5̄ and it is the charge-conjugate

of right-handed charged lepton that sit together with the left-handed quark-doublet

in the 10. Considering, for example, the minimal toy model of SU(5), which has the
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following Yukawa couplings

LY ukawa = λ33(5̄3103)5̄H + λ23(5̄2103)5̄H + λ32(5̄3102)5̄H (3.16)

with λ32 ¿ λ23 ∼ λ33, the 2-3 sector of mass matrices of down-type quarks and

charged leptons follow

D(23) =




0 σ

ε 1


 MD,

L(23) =




0 ε

σ 1


 MD, (3.17)

with MD = λ33〈5H〉, εMD = λ32〈5H〉, and σMD = λ23〈5H〉, which leads to ε ¿ σ ∼

1. The mass matrices of down-type quarks and charged leptons are related, but up

to a left-right transposition D = LT due to the group structure. In such a way, the

left-handed quark mixing and right-handed lepton mixing in the 2-3 sector are both

of the size of ε, which is small, and the left-handed lepton mixing and right-handed

quark mixing in the 2-3 sector are both of the size of σ, which is large.

Although the SO(10) GUT is a left-right symmetric theory, it can be broken

in the left-right asymmetric way, and has the potential of realizing the structures

of SU(5). In fact, the SU(5) operator (5̄i10j)5̄H can be embedded into the SO(10)

operator (16i16H)10(16j16′H)10, where 16H pick up the vev in the right-handed neu-

trino direction (1 of SU(5))and the other 16-dimensional spinor 16′H pick up the vev

in the component of 5̄ of SU(5). Thus, in the SO(10) model, with the following

operators

L = λ3316316310H + λ23(16216H)10(16316′H)10 + λ′23(162163)12010H45H (3.18)
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the mass matrices take the form

U =




0 0 0

0 0 ε/3

0 −ε/3 1




MU ,

D =




0 0 0

0 0 σ + ε/3

0 −ε/3 1




MD,

N =




0 0 0

0 0 −ε

0 ε 1




MU ,

L =




0 0 0

0 0 −ε

0 σ + ε 1




MD, (3.19)

with ε ¿ σ ∼ 1. The introduction of a large σ brings two benefits. First, it realizes

the lopsided structure of SU(5). Second, the mass relation between the down-type

quark and the charged lepton in the second family is changed. Instead of

ms '
( ε

3

)2

MD,

mµ ' ε2MD, (3.20)

which leads to the problematic mass relation

ms

mµ

=
1

9
, (3.21)

as we mentioned earlier, the introduction of large σ changes the masses to be ap-
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proximately

ms ∝ ε

3

(
σ +

ε

3

)
' ε

3
σ,

mµ ∝ ε(σ + ε) ' εσ, (3.22)

which leads to the correct empirical mass relation

ms

mµ

=
1

3
. (3.23)

The above analysis of masses and mixing of quarks and leptons shows that

the lopsided structure, which is intrinsically embedded in SU(5) but also realizable

in SO(10) model, can not only naturally explain the large 2-3 mixing of leptons

and small 2-3 mixing of quarks, but also help to give the correct empirical relation

between masses of down-type quarks and charged leptons in the second family. In

the following section, we discuss the realistic models based on this idea.

3.2 Realistic SO(10) GUT Models with Lopsided Structure

The first realistic SO(10) model with lopsided structure is constructed in a

series of papers by Albright, Barr, and Babu [45, 46, 47, 48]. At the first stage

[45], the model was established to explain the large atmospherical mixing in the

lepton sector versus small 2-3 mixing Vcb in the quark sector. Soon after, the model

was extended by Albright and Barr to include the first family [46]. It was found

that the model naturally predicts the 1-2 neutrino mixing angle θ12 (solar angle) to

be either small, or very near to the maximum value, corresponding to the so called

”bimaximum mixing” scenario. After the solar neutrino experiments in which the θ12

62



is found to be around 30o, Albright and Barr have attempted to modify their model

to accommodate this large solar angle. But in doing so, there must be considerable

fine-tuning. The issue is that, in order to produce the large solar angle, different

free parameters must be made to be exactly equal to each other.

This can be seen from the explicit presentation of their original model. Via

couplings with a set of Higgs multiplets 10H , 16H , 16H and 45H and the constraints

from the flavor U(1)×Z2×Z2 symmetry, the Dirac fermion mass matrices have the

following forms in the original model of Albright and Barr,

U =




η 0 0

0 0 ε/3

0 −ε/3 1




MU ,

N =




η 0 0

0 0 −ε

0 ε 1




MU ,

D =




η δ δ′eiφ

δ 0 σ + ε/3

δ′eiφ −ε/3 1




MD,

L =




η δ δ′eiφ

δ 0 −ε

δ′eiφ σ + ε 1




MD, (3.24)

where U , D, L, and N , as in the last section, denote up-type quark, down-type

quark, charged lepton, and neutrino Dirac mass matrices, respectively. The various
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entries in the mass matrices come from different SO(10) Yukawa operators, e.g., η

from 16116110H ; ε from 16216310H45H , δ, δ′ from 161162,316H16′H ; and σ from

16216H16316
′
H . It is worth to mention that all the relations between different

entries, such as minus signs and coefficients of 1/3, are naturally due to the group

structure. The model so far is completely natural. The parameter σ is of order

one, signaling the lopsidedness between the second and third families in D and L.

This feature leads to a large left-handed neutrino mixing in the PMNS matrix and a

small left-handed quark mixing in the CKM matrix. The parameter ε is one order-

of-magnitude smaller than σ and generates the hierarchy between the second and

third families. In extending to the first family, δ and δ′ were introduced into the D

and L.

The large solar mixing angle is constructed from the left-handed neutrino

Majorana mass matrix, which in turn depends on a very specific structure in right-

handed Majorana mass matrix MR

MR =




c2η2 −bεη aη

−bεη ε2 −ε

aη −ε 1




ΛR, (3.25)

with all the entries in MR generated from the operator 16i16j16H16H . The fine-

tuning problem is obvious — the entries in the Majorana mass matrix MR and the

Dirac mass matrices U , D, L, and N are from different operators, and therefore they

are not connected by the group structure. The appearance of ε in both Majorana

mass matrix MR and Dirac mass matrices U , D, L, N surely signifies the fine-tuning

problem.
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By varying the four parameters in the MR [49], the predication of θ13 from this

model was found to lie in the range of 10−5 ≤ sin2 θ13 ≤ 10−2. A narrower range of

0.002 ≤ sin2 θ13 ≤ 0.003 is obtained when constraints are imposed on the parameter

space. Therefore, the prediction of θ13 from the original lopsided model supports

the empirical rule that model using large dimensional Higgses predict large θ13 and

these using small dimensional Higgses predict small θ13 [55]. If ν̄e disappearance

at short baseline experiments is observed in the next generation of short baseline

reactor experiments [40], the original lopsided model would be ruled out.

Given that the SO(10) GUT model with lopsided structure is one of the most

successful GUT theories incorporating all the known experimental facts, two obvious

questions arise immediately. First, is there a more natural way to realize the large

solar-neutrino mixing angle without fine-tuning? And second, if such an alternative

model exists, is θ13 consistently small?

Since the fine-tuning problem is associated with the specific way of generat-

ing the solar angle, we look for other ways of producing it. The lepton mixing

matrix describes the mismatch between mass eigenstates of left-handed neutrino

and charged lepton as shown in Eq. (3.15). The large solar mixing can either be

generated from U †
L or Uν or a combination of both. If there is a non-vanishing 1-2

rotation from Uν , it can either be generated from the Dirac mass matrix or from the

Majorana mass matrix of the right-handed neutrinos or a combination of both. In

the following, we focus on the possibilities in which one of the matrices generates a

large solar-neutrino mixing angle, keeping in mind though that a general situation

might involve a mixture of the extreme cases.
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In the original lopsided model, the large solar-neutrino mixing is induced

mainly by the right-handed neutrino mass matrix. Thus, an alternative possibil-

ity is to produce the large solar-neutrino mixing from the charged lepton matrix. In

fact, in Ref. [56], a model was proposed in which both large solar and atmospheric

neutrino mixings are generated from the lopsided charged-lepton mass matrix. The

value of sin2 2θ13 is again found to be small, 0.01 or less.

Here we study yet a third possibility of generating a large 1-2 rotation in the

lepton mixing from the neutrino Dirac mass matrix N . The easiest way to achieve

this might be to use a lopsided structure in the 1-2 entries of N . However, this is

impossible in group theory of SO(10). A large rotation, however, can be generated

through 1-3 and 2-3 entries without affecting, for example, the quark mass hierarchy

66



between the first and second generations. Thus the modified mass matrices are

U =




η 0 κ + ρ/3

0 0 ω

κ− ρ/3 ω 1




MU ,

D =




η δ δ′eiφ

δ 0 σ + ε/3

δ′eiφ −ε/3 1




MD,

N =




η 0 κ− ρ

0 0 ω

κ + ρ ω 1




MU ,

L =




η δ δ′eiφ

δ 0 −ε

δ′eiφ σ + ε 1




MD,

MR =




a 0 0

0 b 0

0 0 1




ΛR, (3.26)

The symmetric entries ω and κ in U and N can be generated from the dimension-

5 operator 16i16j[16H16
′
H ]10, and the antisymmetric ρ entries in U and N are

from dimension-6 operator 16i16j[16H16
′
H ]1045H , where the subscript 10 indicate

that the spinor Higgses are coupled to 10 of SO(10). Because of the modifica-

tion, the ε entries in D and L now must be generated from dimension-6 operator

16i16j[16H16′H ]1045H . We assume as in the past that 45H Higgs develops a vac-
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uum expectation value (VEV) in the B − L direction. 16H and 16H are the Higgs

spinors which break the SO(10) to SU(5) by taking the VEV in the singlet direction

of SU(5). The second pair of 16′H and 16
′
H develop VEV in 5 and 5 of SU(5),

respectively, and therefore the operators involving 16
′
H and 16′H contribute to up

and down sectors of weak doublets, respectively.

Usually a rotation is connected with the mass spectrum. However, in our case

the 1-2 rotation angle from U will be combined with the 1-2 rotation from D to

obtain the Cabibbo angle θc, and a constraint from the up-type quark spectrum

must be avoided. Thus, the first two families in the U and N cannot be coupled

to each other directly, but can be coupled indirectly through the third family. The

1-2 rotations in U and N generated from this way are proportional to the ratios

γ ≡ (κ− ρ/3)/ω and γ′ ≡ (κ + ρ)/ω, respectively.

Taking the approximation η = 0, the dependence of various mass ratios and

CKM elements on parameters can be seen roughly from the following approximate
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expressions (the superscript 0 indicates the relevant quantities are at GUT scale)

m0
b/m

0
τ ' 1− 2

3

σ

σ2 + 1
ε ,

m0
u/m

0
t ' 0 ,

m0
c/m

0
t ' (1 + γ2)ω2 ,

m0
µ/m

0
τ ' ε

σ

σ2 + 1
,

m0
s/m

0
b ' 1

3
ε

σ

σ2 + 1
,

m0
e/m

0
µ ' 1

9
tLtR ,

m0
d/m

0
s ' tLtR,

V 0
cb ' −

√
1 + γ2ω − 1√

1 + γ2

ε

3(1 + σ2)
,

V 0
us ' 1√

1 + γ2
(−γ + tLeiθ) ,

V 0
ub ' 1√

1 + γ2

ε

3(σ2 + 1)
(γ − tLeiθ +

√
1 + σ2tR) , (3.27)

where tL, tR and θ are defined as tLeiθ ≡ 3(δ−σδ′eiφ)/(σε) and tR ≡ 3δ
√

σ2 + 1/(σε).

The expressions for mass ratios in down-type quark and charged lepton sectors

are the same as those in the original lopsided model. The expressions for m0
c/m

0
t

and elements in CKM matrix are new. These approximations allow us to design

strategies to fit various parameters to experimental data.

First, we use the up-type quark and lepton spectra and the parameters in the

CKM matrix to determine 10 parameters σ, ε, δ, δ′, φ, ω, γ, η, MU and MD. Our

best fit yields σ and ε approximately the same as those in the original lopsided

model, and thus the successful prediction for the mass ratios m0
µ/m

0
τ and m0

s/m
0
b

are kept. The two CKM elements |V 0
us| and |V 0

ub|, together with the CP violation
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phase δCP and the constraint on the product tLtR from mass ratio m0
e/m

0
µ, can fix

the tL, tR, γ and θ. Then ω and η can be fixed from m0
c/m

0
t and m0

u, respectively.

The down-type quark mass spectrum comes out as predictions.

To see the dependence of the lepton mixing PMNS matrix on various parame-

ters, we construct the Majorana mass matrix of the left-handed neutrino from the

seesaw mechanism[13], mν = −NM−1
R N ,

mν = −




η2/a + (κ + ρ)2 (κ + ρ)ω η(κ− ρ)/a + (κ + ρ)

(κ + ρ)ω ω2 ω

η(κ− ρ)/a + (κ + ρ) ω 1 + (κ− ρ)2/a + ω2/b




M2
U/ΛR ,(3.28)

which depends on the four unknown parameters, γ′, ΛR, a and b. With parameter a

taking a reasonably large value, say, order of 0.001 or larger, the η dependent terms

can be neglected. Then one readily sees that the mν matrix can be diagonalized by

a 1-2 rotation of angle θν
12 with tan θν

12 = γ′, and followed by a 2-3 rotation by angle

θν
23, with

tan 2θν
23 =

2
√

1 + γ′2ω
1 + (κ− ρ)2/a + ω2/b− (1 + γ′2)ω2

. (3.29)

The neutrino Majorana masses of the second and the third families are

mν2 = −
[
(1 + γ′2)ω2 +

√
1 + γ′2ω (cot2θν

23 − csc2θν
23)

]
M2

U/ΛR ,

mν3 = −
[
(1 + γ′2)ω2 +

√
1 + γ′2ω (cot2θν

23 + csc2θν
23)

]
M2

U/ΛR , (3.30)

with mν1 = 0 as the result of the approximation η = 0. Therefore, the present

model constrains the neutrino mass spectrum as hierarchial, which means that the

parameters in the light-neutrino mass matrix, the mass eigenvalues and mixings, do
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not run significantly from GUT to low-energy scales. The mass difference ∆m2
ν12

can be used to fix the right-handed neutrino mass scale ΛR.

Taking into account rotations from matrices mν and L, we arrive at the ele-

ments in the PMNS matrix,

Ue2 =

(
γ′√

1 + γ′2
− tR

3

1√
1 + γ′2

1√
1 + σ2

)
cos θν

23 −
tR
3

σ√
1 + σ2

sinθν
23 ,

Uµ3 = − σ√
1 + σ2

cos θν
23 +

1√
1 + γ′2

(
γ′

tR
3

+
1√

1 + σ2

)
sinθν

23 ,

Ue3 =
tR
3

σ√
1 + σ2

cos θν
23 +

(
γ′√

1 + γ′2
− tR

3

1√
1 + σ2

√
1 + γ′2

)
sinθν

23 .(3.31)

The data on the solar-neutrino mixing Ue2, together with the ratio of mass dif-

ferences, ∆m2
ν12/∆m2

ν23 = m2
ν2/(m

2
ν3 − m2

ν2), can fix γ′ and θν
23, where the latter

depends on a combination of a and b. Having fixed γ′ and parameters in MR, the

atmospheric-neutrino mixing Uµ3 and Ue3 are obtained as predictions.

We summarize our input and detailed fits as follows. For CKM matrix ele-

ments, we take |Vus| = 0.224, |Vub| = 0.0037, |Vcb| = 0.042, and δCP = 60◦ as inputs

at electroweak scale. With a running factor of 0.8853 for |Vub|, and |Vcb| taken into

account, we have |V 0
ub| = 0.0033 and |V 0

cb| = 0.037 at GUT scale. For charged lepton

masses and up-type quark masses, we take the values at GUT scale corresponding to

tanβ = 10 from Ref. [54]. For neutrino oscillation data, we take the solar neutrino

angle to be θsol = 32.5◦ and mass square differences as ∆m2
ν12 = 7.9× 10−5eV2 and
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∆m2
ν23 = 2.4× 10−3eV2. The result for the 12 fitted parameters is

σ = 1.83,

ε = 0.1446,

δ = 0.01,

δ′ = 0.014,

φ = 27.9◦,

η = 1.02× 10−5,

ω = −0.0466,

ρ = 0.0092,

κ = 0.0191,

MU = 82.2 GeV,

MD = 583.5 MeV,

ΛR = 1.85× 1013 GeV (3.32)

There is a combined constraint on a and b, and thus the right-handed Majorana

mass spectrum is not well determined. As examples, if a = b, a = −2.039 × 10−3;

and if a = 1, b = −1.951× 10−3.

We show the result for the down-type quark masses and right-handed Majo-

rana neutrino masses (taking a and b as those values in Eq. (4.21) which are fitted
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to produce the baryon asymmetry) as follows,

m0
d = 1.08 MeV,

m0
s = 25.97 MeV,

m0
b = 1.242 GeV,

M1 = 2.27× 1010GeV,

M2 = 3.61× 1010GeV,

M3 = 1.85× 1013GeV . (3.33)

The predictions for the mixing angles in the PMNS matrix are,

sin2 θatm = 0.49,

sin2 2θ13 = 0.074 . (3.34)

The result for θatm is particularly interesting: Although the lopsided mass matrix

model is built to generate a large atmospheric-neutrino mixing angle, the charged

lepton mass matrix alone produces a 2-3 rotation of 63◦ instead of 45◦ because of the

constraint from the lepton mass spectrum. With an additional rotation θν
23 ' 21◦

fixed mainly from the ratio of mass differences ∆m2
ν12/∆m2

ν23, the nearly maximal

atmospheric mixing 44.6◦ comes out as a prediction. If one releases the best-fit

value of ∆m2
ν12 and ∆m2

ν23 and only imposes the 3σ constraint as 7.1× 10−5eV2 ≤

∆m2
ν12 ≤ 8.9 × 10−5eV2 and 1.4 × 10−3eV2 ≤ ∆m2

ν23 ≤ 3.3 × 10−3eV2, one would

obtain, as shown in Fig. 3.1, 0.44 ≤ sin2 θatm ≤ 0.52 which is well within the 1σ

limit, and 0.055 ≤ sin2 2θ13 ≤ 0.110 which, as a whole region, lies in the scope of

next generation of reactor experiments.
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Figure 3.1: The predictions of sin2 θatm and sin2 2θ13 against the mass
square difference ratio ∆m2

ν23/∆m2
ν12. The region of ∆m2

ν23/∆m2
ν12 is

obtained from the values of ∆m2
ν23 and ∆m2

ν12 within their 3σ limits.
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In summary, an SUSY SO(10) GUT model with lopsided structure is con-

structed to overcome the fine-tuning problem associated with the original lopsided

model of Albright, Babu and Barr. It contains 13 parameters. After fitting them to

experimental data, it yields a number of predictions. Whenever the experimental

data are available, they work well. Most interestingly, the model predicts a sin2 2θ13

around 0.074, which is significantly larger than that from any of previous lopsided

models. It can surely be tested through the next generation of reactor neutrino

experiments.
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Chapter 4

BARYOGENESIS VIA LEPTOGENESIS IN LOPSIDED MODEL

4.1 Introduction: Various Scenarios of Baryogenesis

One of the most fundamental questions in modern cosmology is where the

baryon number asymmetry in today’s Universe comes from. Baryon asymmetry of

the Universe is customarily defined as the ratio of the baryon density to the photon

density after the recombination, and has been measured to very good precision from

the WMAP experiment [58]:

ηB =
nB

nγ

= (6.1± 0.2)× 10−10. (4.1)

The big-bang nucleosynthesis is completely consistent with this determination. In-

terestingly, if the baryon density in the Universe is larger or smaller than this number

by two orders of magnitude, galaxies would not form and human beings would not

exist. Instead of assuming this asymmetry as the initial condition, modern physicists

believe it is generated dynamically in the early epoch of the Universe.

It has been realized long time ago by Sakharov [15] that there are three neces-

sary conditions of generating a baryon asymmetry. The first condition is that there

must be a fundamental process that violates baryon number. The second condi-

tion is that both C and CP must be simultaneously violated. This is because the

processes producing particles and antiparticles are connected by both C and CP,
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with the only difference between C and CP being related to polarizations. Thus

with either C or CP conserved in a process, the total numbers of particles and an-

tiparticles produced in the process, regardless of the polarization, are guaranteed

to be the same. The third condition is that the baryon number violating process

must be out of equilibrium. This is because the number densities of particles in

equilibrium are completely fixed by their masses. Since the particle and antiparticle

have the same mass, they are of the same abundance in equilibrium.

There are many scenarios of baryogenesis in which three Sakharov conditions

are satisfied. The GUT baryogenesis scenario is the earliest one. The advent of GUT

realized the first condition — baryon number violation [16, 17] (which was thought

not to be satisfied in SM). Like in SM, the second condition, C and CP violations,

can be naturally satisfied in GUT. The third condition, out of equilibrium condition,

can be satisfied if the baryon asymmetry is generated in the delayed decay of the

heavy particles that are out of equilibrium [59].

Soon after this GUT baryogenesis scenario was proposed, it was realized that

the baryon asymmetry generated in this scenario would be entirely washed out by the

sphaleron process. As noted by ’t Hooft [18], the baryon number is not conserved

in SM due to the quantum corrections. There are many vacua corresponding to

different topological charges. The tunnelling between different vacua causes the

violation of the baryon number. However, this tunnelling, being suppressed by

the factor of e−16π/g2
, was thought to be very weak until Kuzimin, Rubakov, and

Shaposhnikov [19] noted that the tunnelling is not weak at a temperature close to

or higher than the electroweak scale. The solution corresponding to this transition
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is called “sphaleron”, which means “ready to fall”.

The presence of the sphaleron process makes the GUT scenario not a viable

one any more. Nevertheless, the sphaleron process itself makes another scenario

possible, that is, electroweak baryogenesis. The idea is that the baryon asymmetry

can be generated in the sphaleron process itself. Since the sphaleron process is in

equilibrium above the electroweak scale, the only place that it can generate the

asymmetry is in the first-order elctroweak phase transition. However, in order for

the electroweak phase transition to be of a strong first-order, the Higgs mass need

be significantly smaller than the critical value, which is 73.3± 6.4 GeV from lattice

simulation [60]. This is in odd with the empirical lower limit 114 GeV of the Higgs

mass obtained at LEP [61]. SUSY relaxes this tension by introducing extra scalar

particles [62]. In this case, a strong first-order electroweak transition requires mφ <

100 ∼ 115 GeV, which has a small overlap with the empirical lower bound 91 GeV

in MSSM [61]. Another problem of electroweak baryogenesis in SM is that the

CP violation in SM is too small. This problem is also solved in the presence of

SUSY which introduces extra CP violation phases. To summarize, the electroweak

baryogenesis is ruled out in SM but still possible in the presence of SUSY.

Given the problems of the GUT baryogenesis and the difficulty of electroweak

baryogenesis, baryogenesis via leptogenesis [20] emerges as a rather attractive sce-

nario and has been extensively studied [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,

74, 75, 76, 77, 78]. The idea of baryogenesis via leptogenesis is based on the obser-

vation that although baryon number and lepton number are both violated in the

sphaleron process, the B − L number is conserved since it is anomaly free. Thus, if
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the asymmetry of B−L can be generated at high energy, the subsequent sphaleron

process will not erase this asymmetry. What the in-equilibrium sphaleron process

does is just to redistribute the B−L asymmetry into baryon asymmetry and lepton

asymmetry with a fixed proportion [74, 75]

∆Bf =
8NG + 4NH

22NG + 13NH

∆(B − L), (4.2)

where the ∆(B − L) is the initial B − L number produced at high energy and also

the final B − L number after the sphaleron process, the ∆Bf is the final baryon

number, NH is number of Higgs doublets, and NG is the number of families. In SM,

one has NG = 3 and NH = 1, and therefore

∆Bf =
28

79
∆(B − L). (4.3)

Obviously, the final baryon number is zero if ∆(B − L) = 0 initially. This is the

case in GUT baryogenesis scenario, where the baryon and lepton asymmetries are

generated in such a way that the B −L asymmetry is zero. On the other hand, the

baryon asymmetry would be generated if the B − L asymmetry can be produced

at high energy. Therefore, the B − L violation is the necessary condition for this

to happen. The SO(10) GUT naturally realizes this because B − L, as a gauge

symmetry of SO(10), has to be broken when SO(10) is broken to SM. Moreover, in

order for the B−L violation process to be out of equilibrium, it has to happen at a

very high energy scale. This is consistent with the small neutrino mass in the seesaw

mechanism. Thus, the baryogenesis via leptogenesis and the small neutrino masses

are correlated and both of them can be studied in the SO(10) GUT framework.
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In the following, we study the baryogenesis via leptogenesis in the SO(10)

models with the lopsided structure, which have been shown to produce neutrino

masses and mixing among other things.

4.2 Baryogenesis via Leptogenesis in SO(10) Models with Lopsided

Structure

In the baryogenesis via leptogenesis scenario, the lepton number asymmetry,

which is also the B − L asymmetry, is produced through the out-of-equilibrium

decay of heavy right-handed neutrinos. This lepton number asymmetry is converted

to the baryon number asymmetry by the in-equilibrium sphaleron process, in which

the B − L asymmetry remains conserved.

In this scenario, several considerations have to be made. First, what is the

number of right-handed neutrinos decaying out of thermal equilibrium? The answer

to this question in principle depends on the thermal history of the right-handed

neutrinos. In our model, it turns out that this dependence is rather weak because

of the strong washout. Second, what is the lepton density generated from a right-

handed neutrino decay? This, of course, is related to the CP asymmetry of the

decay which in turn depends on the Yukawa interactions. Third, a part of the

generated lepton number asymmetry gets washed out by inverse-decay processes

and scattering. This effect can be rather important, particularly in the so-called

strong washout region. Finally, one must calculate the percentage of lepton number

density converted into the baryon number density through the electroweak sphaleron
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process. The answers to some of the questions are less model-dependent and are

standard in the literature [76]. Here we focus on the parts depending on a particular

model.

4.2.1 Leptogenesis in the New SO(10) Lopsided Model

The density of leptons from right-handed neutrino decays is

nL =
3ζ(3)gNT 3

4π2

3∑
i=1

κiεi , (4.4)

where the first factor is the thermal density of a relativistic fermion with gN = 2 and

the sum is over the number of right-handed neutrinos. The εi is the CP asymmetry in

the decay of the i-th right-handed neutrino; κi is the corresponding efficiency factor,

taking into account the fraction of out-of-equilibrium decays and the washout effect.

Both factors depend on the effective mass defined as

m̃i =
(M ′

νD
M

′†
νD

)ii

Mi

. (4.5)

where M ′
νD

denotes the neutrino Dirac mass matrix in the basis in which the right-

handed neutrino matrix is real and diagonal and Mi is the mass of the right-handed

neutrino.

The lepton number is converted into the baryon number through the B − L

conserving electroweak sphaleron effect as shown in Eq. (4.2, 4.3). The photon

density can be calculated from the entropy density s = 2
45

g∗π2T 3, where g∗ is the

effective number of degrees of freedom, through the relation

s =
4

3

π2

30

(
2 +

21

11

)
π2

2ζ(3)
nγ (4.6)
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where the second factor takes into account the neutrino contribution. Ignoring the

lightest right-handed neutrino contribution, g∗ is 106.75 in SM.

The final ratio of baryon to photon number density through leptogenesis is

ηB =
nB

nγ

= − 602

53009

∑
i

κiεi = −0.0114
∑

i

κiεi . (4.7)

The right-handed neutrinos are assumed to be CP eigenstates in the absence

of the Yukawa type of weak interactions. Through the interactions, they can decay

into both left-handed leptons (neutrino and charged leptons) plus Higgs bosons and

right-handed antileptons plus Higgs bosons. In the leading order, the decay rate is

Γi =
1

8π
(Y ′Y ′†)iiMi , (4.8)

in SM. Here again, Y ′ is the Yukawa matrix in the basis where the right-handed

neutrinos are in the mass eigenstates.

At next-to-leading order, the decay rates into leptons and antileptons are dif-

ferent due to the complex phases in the Yukawa couplings. The decay asymmetry

is defined as

εi =
Γ(Ni → ljH)− Γ(Ni → l̄jH

†)
Γ(Ni → ljH) + Γ(Ni → l̄jH†)

. (4.9)

In one-loop approximation, one finds,

εi =
1

8π

∑

j 6=i

F

(
M2

j

M2
i

)
Im[(Y ′Y ′†)2

ij]

(Y ′Y ′†)ii

, (4.10)

where the decay function [77] is given by

F (x) =
√

x

[
1

1− x
+ 1− (1 + x) ln

1 + x

x

]
. (4.11)

In the limit of large x, this become −3/2
√

x. The first term in F is singular when

two right-handed neutrinos become degenerate in mass, in which case, one must
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resum the self-energy corrections, which leads to the so-called resonant leptogenesis

[67, 68].

As mentioned in the last Chapter, the complex parameters a and b are not

completely fixed by fermion masses and mixing. Here, their values are fitted to

produce right amount of baryon asymmetry

a = 0.00129e−1.808i , b = 0.00198e−3.210i , (4.12)

which leads to the following masses of three right-handed neutrinos

M1 = 2.27× 1010 GeV, M2 = 3.61× 1010GeV, M3 = 1.85× 1013 GeV . (4.13)

We see that M1 and M2 are of the same order, but there is no need to fine-tune

their values to obtain the resonant enhancement. The Yukawa matrix in the basis

in which the right-handed neutrino mass matrix is diagonal and real is

Y ′
ij =




4.8× 10−6e−0.9i 0 0.0046e−0.9i

0 0 −0.022e−1.6i

0.013 −0.022 0.472 .




(4.14)

Plugging in the Yukawa matrix and mass ratios, we find the following CP

asymmetries,

ε1 = −0.92× 10−5 ,

ε2 = −0.24× 10−5 . (4.15)

Here we have shown the CP asymmetry from the second right-handed neutrino as

well because its mass is close to the first one, and hence is potentially important for
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leptogenesis. The result for ε1 exceeds slightly the bound derived by Davidson and

Ibarra [69] because the masses are not so hierarchical.

In our model, M1 is close to M2, and M3 is much heavier. Thus, it is a

good approximation to neglect the CP asymmetries and lepton number generated

from the heaviest right-handed neutrinos (those with mass M3). However, since

δ2 ≡ (M2 − M1)/M1 = 0.53 is less than 1, one has to consider the full decay and

washout effects from the two light right-handed neutrinos.

The efficiency factor can be calculated by solving the Boltzmann equation for

the right-handed neutrinos and lepton densities. The result depends on the effective

mass m̃i. In the present case, we find,

m̃1 = 29.1 meV , m̃2 = 406 meV , (4.16)

The effective masses determine the so-called decay parameters Ki = m̃i/m
∗ where

m∗ = 16π5/2
√

g∗v2/(3
√

5Mpl) = 1.08× 10−3eV. In our case

K1 = 27.0 , K2 = 376.2 . (4.17)

Since Ki À 1, we are in the so-called strong washout region. In this region, the

effective factor has little dependence on the thermal history of the right-handed

neutrinos. One can assume for instance that they are not present in the beginning

but are produced entirely by the inverse scattering processes.

Since the M1 and M2 are close to each other, there exists mutual washout

due to the two lightest right-handed neutrinos. This situation has been discussed

recently in Ref [70], where analytical formulas have been derived from numerical
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solutions of the Boltzmann equations,

κ1 =
2

zB(K1 + K
(1−δ)3

2 ) · (K1 + K
(1−δ)
2 )

, (4.18)

κ2 =

[
1 + 2 ln

∣∣1+δ
1−δ

∣∣]2

zB(K2 + K
(1−δ)3

1 ) · (K2 + K
(1−δ)
1 )

e−
8π
3

K1( δ
1+δ )

2.1

, (4.19)

where zB = M1/TB is the inverse temperature at which the washout effects are

minimized and κ2 is valid when δ ≡ (M2 − M1)/M1 < 1 [71]. Plugging in the

parameters, we find,

κ1 = 6.8× 10−3 , κ2 = 1.3× 10−4 . (4.20)

Thus, because K2 À K1, one has κ1 À κ2. Therefore, the number of out-of-

equilibrium decays from the second lightest right-handed neutrino is more than an

order of magnitude smaller than that from the lightest one.

Putting everything together, the baryon asymmetry in our model is

ηB = −0.96× 10−2
∑

i

κiεi = 6.0× 10−10 , (4.21)

which agrees with the present observation.

Having shown that our model can have enough CP violation at high energy for

leptogenesis, we are interested to see the size of the CP violation at low energy. The

low energy CP violation is encoded into one Dirac CP phase δCP and two Majorana

phases φ1 and φ2 in the PMNS matrix. It has been shown by Branco, Morozumi,

Nobre and Rebelo in [78] that there is no model-independent relation between the

CP violations at high and low energies. The predictions of the low energy CP

phases from our model are all small. The scatter plots of these CP phases versus
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Figure 4.1: The predictions of δCP , φ1, and φ2 against sin22θ13. The plots
are chosen according to the requirement of producing enough leptogen-
esis and satisfying the 3σ range of neutrino oscillation data as described
in the context.
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the sin2θ13 are shown in Fig. 4.1. Those points are chosen to satisfy the 3σ range

of neutrino oscillation data: 0.7 ≤ sin22θ12 ≤ 0.92; sin22θ23 ≥ 0.87; sin2θ13 ≤ 0.051;

7.1× 10−5eV2 ≤ ∆m2
ν12 ≤ 8.9× 10−5eV2; 1.4× 10−3eV2 ≤ ∆m2

ν23 ≤ 3.3× 10−3eV2.

As shown in these scatter plots, the δCP is constrained to be around 3 degree, and

the φ1 and φ2 are within 3 degree and 5 degree deviation from −180 and 90 degree,

respectively, indicating very small CP violation at low energy. The prediction of

sin22θ13 is shown to be within the range 0.06 ≤ sin22θ13 ≤ 0.085.

4.2.2 Leptogenesis in Albright and Barr’s SO(10) Lopsided Model

The main structure of the lopsided of Albright and Barr has been presented in

Eq. (3.24,3.25) in Chapter 3. A set of parameters which reproduce the quark and

charged-lepton spectra and mixings are,

ε = 0.147,

η = 6× 10−6,

δ = 0.00946,

δ′ = 0.00827,

σ = 1.83,

φ = 2π/3,

mU = 113 GeV,

mD = 1 GeV. (4.22)
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Given the above, additional parameters, a, b, c and ΛR, can be easily found to fit the

neutrino mass differences and mixing. However, the model generates a very large

m̃i, which in turn produces a very large decay width for the lightest right-handed

neutrino. As a consequence, the efficiency factor κ is too small. To enhance the

lepton number production, the masses of the two lightest right-handed neutrinos

are forced to a near degeneracy, yielding a large resonant decay asymmetry.

In a recent publication, a very extensive search in the parameter space was

conducted to find a viable leptogenesis in the model [50]. One of the solution has

the following parameters,

η = 1.1× 10−5,

δN = −1.0× 10−5,

δ′N = −1.5× 10−5,

ΛR = 2.85× 1014 GeV,

a = c = 0.5828i,

b = 1.7670i. (4.23)

These parameters lead to the following right-handed neutrino masses,

M1 ∼ M2 = 5.40× 108 GeV , M3 = 2.91× 1014 GeV . (4.24)

The ηB we calculate from these parameters, however, is 2.5× 10−6, roughly a factor

of 2 smaller than that quoted in Ref. [50]. The difference comes from the CP

asymmetry of the decay. When the masses of the two right-handed neutrinos are

close, one cannot use the one-loop result in Eq. (4.10) directly. One has to resum
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the self-energy correction [67] to arrive at

ε1 ≈ Im[(Y ′Y ′†)2
12]

8π(Y ′Y ′†)11

rN

r2
N + [(Y ′Y ′†)11/8π]2

, (4.25)

ε2 ≈ Im[(Y ′Y ′†)2
21]

8π(Y ′Y ′†)22

rN

r2
N + [(Y ′Y ′†)22/8π]2

.

where rN = (M2
1 −M2

2 )/(M1M2) is the degeneracy parameter.

It is worth pointing out that although the CP asymmetry tends to be en-

hanced in the case of two lightest right-handed neutrinos being quasi-degenerate,

the washout effect is also enlarged in this case. Fortunately, in the present model,

m̃2 ∼ m̃1, so the effect is not particularly large. The modified numerical results are

listed in Table 4.1.

From the above discussions, it is obvious that the key parameter which controls

the main features of the leptogenesis is the effective mass m̃1: For a small m̃1, the ef-

ficiency factor is large, and one only needs a moderate value of the decay asymmetry

ε to accomplish leptogenesis. For a large values of m̃1, the out-of-equilibrium decays

are rare, and a successful leptogenesis requires a large decay asymmetry, which is

possible when the masses of right-handed neutrinos become degenerate. A list of

parameters relevant to leptogenesis of various realistic SO(10) models are presented

in Table 4.1 [72], which illustrate this trend.
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BPW GMN JLM DMM AB

M1(GeV ) 1010 1013 3.77× 1010 1013 5.4× 108

−ε 2.0× 10−6 sin 2φ 1.94× 10−6 1.0× 10−5 10−4 sin 2φ 9.4× 10−4

m̃1(eV ) 0.003 0.006 0.026 0.1-0.4 5.4

κ 6× 10−2 1.2× 10−2 6.3× 10−3 10−3 1.4× 10−5

ηB 12× 10−10 sin 2φ 4.97× 10−10 6.2× 10−10 10−9 sin 2φ 2.6× 10−10

sin2 2θ13 ≤ 0.1 0.12 0.06-0.085 0.014− 0.048 0.008

Table 4.1: Predicted mass M1 of the lightest right-handed neutrino, CP asymmetry

ε, effective mass m̃1, efficiency factor κ and baryon asymmetry ηB, and θ13 in various

SO(10) models. The order is arranged according to the size of m̃1. The BPW,

GMN, JLM, DMM, and AB denote the models in Ref. [44], [42], [57], [43], and [50],

respectively.
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Chapter 5

TESTING LOPSIDED STRUCTURE IN B PHYSICS

5.1 Introduction

It has been shown that an SO(10) GUT model with lopsided structure can be

constructed to naturally explain the large atmospheric neutrino mixing and small

quark mixing in the 2-3 sector. This model can fit to all the fermion masses and

mixing, and give an amount of baryon asymmetry consistent with the experiment

data. Nevertheless, there are many other realistic SO(10) GUT models that are also

successful in terms of fitting fermion masses. Given this situation, we are motivated

to investigate the following question: what is the most characteristic feature of the

models with lopsided structure and where to test it?

From the lopsided structure itself, it is clear that the most characteristic fea-

ture is the large right-handed 2-3 mixing of down-type quarks associated with the

large atmospheric neutrino mixing angle. The question is where and how to see

its signature. Clearly this right-handed mixing has nothing to do with the quark

CKM matrix. However, in the presence of SUSY, this large right-handed mixing has

the potential of generating sizable off-diagonal elements in the soft mass matrices

of squarks which, in turn, can be manifested in the flavor-changing neutral current

interaction of down-type quarks, for example, the b → s transition.

The penguin dominated b → s transition (b → sss̄) has long been regarded
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as a golden channel for probing new physics. Moreover, if there are phases associ-

ated with the new physics contributing to this transition, there could be new CP

violations in B decays.

To facilitate our discussion of CP violations in B decays, we follow the com-

monly used notation of defining Af , Af , Af , and Af as decay amplitudes of P → f ,

P → f , P → f , and P → f , respectively, where P and f denote decaying meson

and final multi-particle states, respectively, and P and f denote their CP conjugate

states. The CP violations in decays depend on |Af/Af |. For charged meson, CP

violations are only manifested in decays. For neutral meson P 0 and P
0

which mix

with each other, the CP violations also show up in mixing. The mass eigenstates PL

and PH of neutral meson system, where subscripts L and H denote light and heavy,

respectively, are linear combinations of strong interaction eigenstates P 0 and P
0

|PL,H〉 = pL,H |P 0〉 ± qL,H |P 0〉, (5.1)

with

|pL,H |2 + |qL,H |2 = 1. (5.2)

The Hamiltonian of this system is

H = M − i

2
Γ (5.3)

in the basis of P 0 and P
0
. The conservation of either CP or CPT leads to

(
q

p

)2

=
M∗

12 − (i/2)Γ∗12

M12 − (i/2)Γ12

. (5.4)

If either CP or T is conserved, M12 and Γ12 are relatively real and we have

|q/p| = 1. (5.5)
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The three types of CP violations in meson decays include [22]:

1. CP violations in decays which depend on

|Af/Af | 6= 1. (5.6)

This is the only source of CP asymmetries in charged meson decays

Af± ≡ Γ(P− → f−)− Γ(P+ → f+)

Γ(P− → f−) + Γ(P+ → f+)
=
|Af−/Af+ |2 − 1

|Af−/Af+|2 + 1
. (5.7)

2. CP violations in mixing which depend on

|q/p| 6= 1. (5.8)

This is the only source of CP violations in the time-dependent asymmetry of

charged-current semileptonic neutral meson decays

A ≡ dΓ/dt[P
0

phy(t) → l+X]− dΓ/dt[P 0
phy(t) → l−X]

dΓ/dt[P
0

phy(t) → l+X] + dΓ/dt[P 0
phy(t) → l−X]

=
1− |q/p|4
1 + |q/p|4 . (5.9)

3. CP violations in interference between a decay without mixing P 0 → f and a

decay with mixing P 0 → P
0 → f which depend on

Im(λf ) 6= 0, (5.10)

where

λf ≡ q

p

Af

Af

. (5.11)
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This can be observed in the time-dependent asymmetry of neutral meson de-

cays into final CP eigenstates fCP

AfCP (t) ≡
dΓ/dt[P

0

phy(t) → fCP ]− dΓ/dt[P 0
phy(t) → fCP ]

dΓ/dt[P
0

phy(t) → fCP ] + dΓ/dt[P 0
phy(t) → fCP ]

, (5.12)

which has a simple form in the case of B mesons [79]

Af (t) = Sfsin(∆mt)− Cfcos(∆mt), (5.13)

with

Sf ≡ 2Im(λf )

1 + |λf |2 , Cf ≡ 1− |λf |2
1 + |λf |2 . (5.14)

The neutral B meson decays Bd → φKS and Bd → η′KS involve b → sss at the

quark level and therefore is penguin dominated. Within SM, the indirect CP asym-

metry parameter SφKS
and Sη′KS

are essentially the same as that of B → J/ψKS:

SSM
φKS

' SSM
η′KS

' SJ/ψKS
= Sin2β = 0.685±0.032. However, the experimental values

of SφKS
and Sη′KS

from BaBar and Belle [80] show large deviations from the SM

prediction:

Sexp.
φKS

= 0.50± 0.25+0.07
−0.04 (BaBar),

= 0.06± 0.33± 0.09 (Belle),

Sexp.
η′KS

= 0.27± 0.14± 0.03 (BaBar),

= 0.06± 0.18± 0.04 (Belle), (5.15)

with the average of Sexp.
φKS

= 0.34 ± 0.20 and Sexp.
η′KS

= 0.41 ± 0.11, which display

1.7σ and 2.5σ deviations from the SM predictions, respectively. This significant

discrepancy between SM prediction and experiment data has generated tremendous

amount of effort in searching for beyond SM physics [81, 82].
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It has been pointed out in Ref. [82] that there could exist the correlation

between the large atmospheric mixing and the large b → s transition, based on

the connection between left-handed charged leptons and right-handed down-type

quarks in the framework of SO(10) GUT. However, it should be noted that this

correlation depends exclusively on the lopsided structure, which is the only way

of realizing the possible connection between left-handed charged leptons and right-

handed down-type quarks. Within other realistic SO(10) models [41, 42, 43, 44]

without lopsided structure, a set of parameters of the same order are combined

constructively and destructively to give large atmospheric angle and small quark

2-3 mixing angle, respectively. In these SO(10) models [41, 42, 43, 44], there is

typically no large right-handed down-type quark mixing associated with the large

atmospheric mixing.

We propose to test this correlation by investigating CP-conserving and CP-

violating observables in B decays [57]. Our study [83] shows that the SφKS
and

Sη′KS
could indeed have large deviations from their SM values in the SUSY context.

Moreover, we find a particular pattern of correlation between SφKS
and Sη′KS

, which

makes this class of models distinguishable from other types. We expect the similar

result from Albright and Barr model [45, 46, 50], because these two models are

nearly the same in the down-type quark sector.

This Chapter is organized as follows. The Sec. 5.2 is devoted to the calculation

of flavor changing parameters from the our SUSY SO(10) GUT model. In Sec. 5.3,

we present the predictions of SφKS
and Sη′KS

with the constraints from b → sγ as

well as the recent measurement of ∆MBS
, and discuss how the particular pattern of
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predictions can be used to differentiate models with lopsided structure from others

by future experiments.

5.2 SUSY Flavor Violation Parameters from the SO(10) GUT Model

If SUSY is assumed, the low energy phenomenology is governed by the MSSM,

which introduces more particles and parameters than those in SM.

In SM, there is only one Higgs field. The anomaly cancellation does not

involve Higgs fields because they are scalars. However, in SUSY theories, the Higgs

superfields involve fermionic degrees of freedom (Higgsino). In order for the anomaly

cancellation, two Higgs superfields Hu and Hd with opposite hyper-charge need be

introduced. This introduces two more parameters. One of them is

tanβ =
〈Hu〉
〈Hd〉 , (5.16)

which arises in the electroweak breaking as the ratio of vevs of two Higgs fields Hu

and Hd. Thus

〈Hu〉 = vsinβ, 〈Hd〉 = vcosβ, (5.17)

with v = 175 GeV as fixed from the W± and Z0 masses. The reasonable range of

tanβ is 1 ≤ tanβ ≤ 60 [84].

The other parameter is the coupling between these two Higgs superfields in

the superpotential

µHuHd, (5.18)

which is referred as the µ term. Although the coupling µ can be a very large scale,
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the radiative electroweak breaking condition requires it to be of the same order as

the soft SUSY breaking scale.

While there are only two extra parameters needed in the unbroken MSSM, the

soft-broken MSSM introduces more parameters

−Lsoft = (m2
l̃
)ij l̃

†
Lil̃Lj + (m2

ẽ)ij ẽ
†
RiẽRj + (m2

q̃)ij q̃
†
Liq̃Lj + (m2

ũ)ijũ
†
RiũRj

+(m2
d̃
)ij d̃

†
Rid̃Rj + (m2

Hu
)H†

uHu + (m2
Hd

)H†
dHd

+
(
Aij

u Huq̃Liũ
†
Rj + Aij

d Hdq̃Lid̃
†
Rj + Aij

e Hdl̃Liẽ
†
Rj + BhHuHd + H.C.

)

+

(
1

2
M1B̃LB̃L +

1

2
M2W̃

a
LW̃ a

L +
1

2
M3g̃

a
Lg̃a

L + H.C.

)
. (5.19)

Here the first few quadratic terms are soft masses of doublet-slepton l̃L, the right-

handed charged slepton ẽR, the doublet-squark q̃L, the right-handed up-type squark

ũR, the right-handed down-type squark d̃R, and the Higgs bosons. The terms in

the third lines are soft trilinear A terms and bilinear B term. The terms in the last

line are gaugino mass terms, where B̃, W̃ , and g̃ are B-ino, W-inos, and gluinos,

respectively.

The soft masses and A terms are 3 × 3 matrices in the family space, with

off-diagonal terms causing flavor violations. The parameters in soft terms could

be complex and therefore induce new CP violations. In fact, the soft terms in its

most general form introduce too many extra parameters, leading to too large flavor

violations and CP violations. This is the infamous flavor problem and CP problem

of SUSY. To solve this problem, the universality condition has to be imposed at

the SUSY breaking scale M∗. This universality condition, which can be naturally

realized in some SUSY breaking scenario, requires the soft mass matrices to be pro-
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portional to the unit matrix, and the soft trilinear matrices to be proportional to

the corresponding Yukawa coupling (alignment condition) with universal coefficients

m2
0 and A0, respectively. Under this, the number of parameters of MSSM is consid-

erably reduced. Moreover, the three gaugino masses M1, M2, and M3 can be traced

back to a single gaugino mass M1/2 at the GUT scale. Thus with the universality

condition imposed, there are only 5 extra parameters in MSSM

m0, m1/2, A0, tanβ, µ. (5.20)

Although the number of parameters is dramatically reduced with the univer-

sality condition imposed on the SUSY breaking scale M∗, the RG running to the

electroweak scale MEW still generates flavor violation terms.

The SUSY flavor violation and flavor-violating CP violation in the quark sector

are induced by the off-diagonal elements of squark mass-squared matrices m2
AB with

A,B = L,R indicating the chirality. Taking the down-type squark as an example,

the mass-squared matrix (md)2
ij is

−L =

(
d̃†Li, d̃†Ri

)



(md
LL)2

ij (md
RL)2

ij

(md
LR)2

ij (md
RR)2

ij







d̃Lj

d̃Rj


 , (5.21)

where i, j = 1, 2, 3 are family indices. The (md
LL)2 and (md

RR)2 are Hermitian matrix.

They are given by

(md
LL)2

ij = (m2
q̃)ij + m2

di
δij + m2

Zδijcos2β

(
−1

2
+ sin2θW

)
,

(md
RR)2

ij = (m2
d̃
)ij + m2

di
δij −m2

Zδijcos2βsin2θW , (5.22)

where the (m2
q̃)ij and (m2

d̃
)ij are soft masses, and the remaining terms originate from

F-term and D-term and arise after the electroweak breaking. The (md
LR)2 is given
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by

(md
LR)2

ij = Aij
d vcosβ −mdi

µδijtanβ (5.23)

where the first term originates from soft trilinear coupling, and the second term is

from the F-term in the scalar potential. The (md
RL)2 is the Hermitian conjugate of

(md
LR)2.

In the mass insertion approximation (MIA) approach, the relevant parameters

are δAB’s, which are the m2
AB divided by the average squark mass-squared. We

restrict ourselves to studying the gluino contribution, which is believed to be the

dominant one due to the enhancement by the large gauge coupling αS [85]. In the

gluino-induced contribution, the relevant parameters for the b → s transition are the

(δd
LL,RR,LR,RL)23 of down-type quarks. We are going to show how these parameters

are calculated in the SO(10) GUT model in this section.

Among the five SUSY parameters: (m0,m1/2, A0, tanβ, µ), we assume A0 = 0

at M∗ (see [88] for justification). A nonzero A0 does not bring any significant change

to the results since the alignment condition is assumed. The magnitude of µ is fixed

from the radiative electroweak breaking, whereas its phase φµ is constrained from

the electric dipole moment (EDM) bounds, which, if cancellation exists, restrict φµ

to be within ±π/10 deviation from 0 or π [86, 87]. We take the φµ to be in the

range of (−π/10, π/10) for concreteness. The tanβ is fixed to be 10 when our SO(10)

model is constructed to fit fermion masses [57]. The two soft masses m0 and m1/2

are set to be within 1 TeV.

The off-diagonal elements of squark mass-squared matrices are generated from
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the RG running between the SUSY breaking scale M∗ and the electroweak scale

MEW. The GUT symmetry breaking scale, MGUT = 2 × 1016GeV, divides this

running into two parts: above -MGUT and below -MGUT runnings.

In the following discussion, we will stick to the super-KM basis for the squark

fields, in which the neutral current quark-gaugino-squark vertices are diagonal.

Below the MGUT, there are two Yukawa couplings in the quark sector: d̄YdQHd

and ūYuQHu. The running of (md
RR)2 is proportional to YdY

†
d which is diagonal in

the super-KM basis of right-handed down-type squarks. Therefore no off-diagonal

element of (md
RR)2 should be generated from the below-MGUT running. Nevertheless,

the running of (md
LL)2 involves both Y †

d Yd and Y †
u Yu. While the former is diagonal

in the super-KM basis of left-handed down-type squarks, the latter is not and could

generate the off-diagonal elements of (md
LL)2. We have

(δd
LL)below−GUT

ij = − 3

8π2
(Y †

u Yu)ij ln(
MGUT

MEW

) (5.24)

where again the Yu is in the basis of SU(2)L doublet that Yd is diagonal.

Above the MGUT, all the 16 fermions, including the right-handed neutrino, are

in the 16 spinor representation of SO(10). The soft mass-squared m2
16 is renormalized

by the single renormalizable operator f3316316310H in the model. As discussed in

Ref. [89], the initial universal soft mass-squared (m2
16)|M∗ = diag(m2

0,m
2
0,m

2
0) is not

kept at MGUT: (m2
16)|MGUT

= diag(m2
0, m

2
0, m

2
0 −∆m2). The change of 3-3 element

∆m2 is due to the renormalization by the operator f3316316310H :

∆m2 =
60m2

0

16π2
f 2

33 ln(
M∗

MGUT

). (5.25)

The parameter f33 is not completely fixed in the model and we choose it to be 1/2,
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which is in the reasonable range. This non-universal, diagonal, soft mass-squared

matrix is in the GUT basis. After being rotated to the super-KM basis, off-diagonal

elements of (md
RR,LL)2 are generated:

(md
LL,RR)2|super−KM = U †

L,R(m2
16)|MGUT

UL,R (5.26)

where UL,R are the unitary transformations that diagonalize the down-type quark

mass matrix Mdigonal
d = U †

RMdUL. The (δd
LL,RR)above−GUT is obtained as (md

LL,RR)2|super−KM

divided by the average of its diagonal elements. Finally, the δd
LL is the sum of

(δd
LL)below−GUT and (δd

LL)above−GUT, while the δd
RR = (δd

RR)above−GUT is only from

above-GUT running.

That the correlation between atmospheric neutrino mixing and b → s transi-

tion depends exclusively on the lopsided structure can be explicitly seen here: In

the lopsided flavor structure, the 2-3 element of Md is large, and induces a large 2-3

rotation θR
23 in UR. This large rotation in turn produces a large (δd

RR)above−GUT
23 as

shown in Eq. (5.26). Finally, the large off-diagonal squark masses can generate a

large b → s transition.

Although we set A0 = 0 at M∗, it could be generated through radiative cor-

rections. For (md)2
RL,LR, the running below MGUT, being proportional to Yd, only

induces diagonal elements in the super-KM basis. However, running from M∗ to

MGUT does generate off-diagonal elements of ALR,RL. In the GUT basis

Ad
RL|GUT = c




63
2
η 45δ 45δ′

45δ 0 45σ + 61ε/3

45δ′ −61ε/3 63
2




MD, (5.27)
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where c = 1
8π2 g

2
10M1/2 ln( M∗

MGUT
) and η, δ, δ′, ε, and MD are parameters fixed in

the model [57]. The pre-coefficients 63/2, 45, and 61 are sums of Casimirs of

SO(10) representations involved in the operators 16i16j10H , 16i16j[16H16
′
H ]10, and

16i16j[16H16
′
H ]1045H , respectively. Again, one simply applies UR,L on both sides of

Ad
RL to go to the super-KM basis

Ad
RL|super−KM = U †

RAd
RL|GUTUL, (5.28)

which, together with the diagonal µ term contribution, gives the full (md
RL)2: (md

RL)2 =

Ad
RL|super−KM − µtanβ diag(md,ms,mb). Finally, δd

RL,LR is obtained as δd
RL,LR =

(md
RL,LR)2/m2

0.

To see the characteristic feature of the lopsided structure, it is instructive

to look at the size of all the δ’s. Taking m0 = 300 GeV, m1/2 = 500 GeV, and

φµ = π/10 as an example, we have (δd
RR)23 = 0.28e−0.05i, (δd

LL)23 = 0.0028e−0.07i,

(δd
LR)23 = 0.00003e−0.05i, (δd

RL)23 = −0.0009e−0.05i. Obviously, the (δd
RR)23 is of

several orders of magnitude larger than all the other δ’s. Moreover, given this

large (δd
RR)23, a large effective (δd

RL)eff
23 is generated from the double mass insertion:

(δd
RL)eff

23 = (δd
RL)23 + (δd

RR)23µtanβmb/m
2
0, which is 0.064e−0.38i for the same set of

parameters. The effective (δd
LR)eff

23 still remains small in the case of double mass

insertion due to the smallness of (δd
LL)23. As a result, the lopsided model predicts

large (δd
RR)23 and (δd

RL)eff
23 , and small (δd

LL)23 and (δd
LR)eff

23 .
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5.3 SφKS
and Sη′KS

Predictions

The most general effective Hamiltonian H∆B=1
eff for the non-leptonic ∆B = 1

processes is

H∆B=1
eff =

GF√
2

∑
p=u,c

λp

(
C1Q

p
1 + C2Q

p
2 +

10∑
i=3

CiQi + C7γQ7γ + C8gQ8g

)

+{Qi → Q̃i, Ci → C̃i}, (5.29)

where λp = V CKM
pb V CKM

ps
∗

and Ci ≡ Ci(mb) is the Wilson coefficient at the energy

scale of b quark mass. The basis operators in H∆B=1
eff are

Qp
1 = (p̄α

Lγµbβ
L)(s̄β

Lγµpα
L), Qp

2 = (p̄α
Lγµbα

L)(s̄β
Lγµpβ

L), (5.30)

Q3 = (s̄α
Lγµbα

L)
∑

q

(q̄β
Lγµqβ

L), Q4 = (s̄α
Lγµbβ

L)
∑

q

(q̄β
Lγµqα

L),

Q5 = (s̄α
Lγµbα

L)
∑

q

(q̄β
Rγµqβ

R), Q6 = (s̄α
Lγµbβ

L)
∑

q

(q̄β
Rγµqα

R),

Q7 = (s̄α
Lγµbα

L)
∑

q

3

2
eq(q̄

β
Rγµqβ

R), Q8 = (s̄α
Lγµbβ

L)
∑

q

3

2
eq(q̄

β
Rγµqα

R),

Q9 = (s̄α
Lγµbα

L)
∑

q

3

2
eq(q̄

β
Lγµqβ

L), Q10 = (s̄α
Lγµbβ

L)
∑

q

3

2
eq(q̄

β
Lγµqα

L)),

Q7γ =
e

8π2
mbs̄

α
Lσµνbα

RFµν , Q8g =
gs

8π2
mbs̄

α
LσµνtAαβbβ

RGA
µν ,

where σµν = 1
2
i[γµ, γν ] and

∑
q ≡

∑
q=u,d,s,c,b. The α and β are color indices, and

tAαβ are the SU(3) Gell-Mann matrices. Moreover, the Q̃i ≡ Q̃i(mb) are obtained

from Qi by the exchange of chirality L ↔ R. In SM, due to that charged current

interaction only involves left-handed fields, the Wilson coefficients C̃i vanishes, while

in MSSM, both Ci and C̃i exist.

The effective Hamiltonian H∆B=2
eff for the ∆B = 2 processes is

H∆B=2
eff =

5∑
i=1

Ci(µ)Qi(µ) +
3∑

i=1

C̃i(µ)Q̃i(µ). (5.31)

103



(Notice that the Wilson coefficients in Eqs. (5.29) and (5.31), although both denoted

by Ci and C̃i, are in fact different ones.) The basis operators in H∆B=2
eff are

Q1 = s̄α
Lγµb

α
Ls̄β

Lγµbβ
L,

Q2 = s̄α
Rbα

Ls̄β
Rbβ

L,

Q3 = s̄α
Rbβ

Ls̄β
Rbα

L,

Q4 = s̄α
Rbα

Ls̄β
Lbβ

R,

Q5 = s̄α
Rbβ

Ls̄β
Lbα

R, (5.32)

and the operators Q̃1,2,3 are obtained from Q1,2,3 by the exchange of chirality L ↔ R.

All the relevant contributions of the high energy physics above W mass, in-

cluding the SUSY particle contribution, enter the Wilson coefficients at µ = mW :

C(mW ) and C̃(mW ). The matrix elements of local operators are, however, obtained

at the energy scale of the bottom quark mass mb. Therefore, one needs to obtain

the Wilson coefficients at low energy by solving the RG equations of QCD and QED

in SM:

Ci(mb) =
∑

j

Û(mb,mW )Cj(mW ) , (5.33)

where the evolution matrix Û(mb,mW ) for ∆B = 1 and ∆B = 2 Wilson coefficients

can be found in Ref. [90] and Ref. [91], respectively.

The SM and SUSY contributions to Wilson coefficients can be found in Refs.

[92, 93]. It is worth noting that the SUSY contribution depends on the squark mass

mq̃ and gluino mass mg̃, which are larger than the universal soft scalar mass m0 and

gaugino mass m1/2 due to the RG running. We use the matrix elements of local

operators evaluated in QCD factorization (QCDF), developed in Ref. [94], which
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makes the strong phase calculable, yet introduces undetermined parameters ρH,A

and phases φH,A.

To make prediction of SφKS
, we first impose constraints on the parameter

space by requiring the prediction of branching ratio and CP asymmetry of b → sγ

and ∆MBS
to be within the experimental bounds.

The gluino contribution to the branching ratio b → sγ is [92]

BR(b → sγ)g̃ =
α2

sα

81π2m4
q̃

{|mbM3(x)(δd
LL)23 (5.34)

+mg̃M1(x)(δd
LR)23|2 + L ↔ R

}
,

where the loop functions M1(x) and M3(x) with x = m2
q̃/m

2
g̃ can be found in Ref.

[92]. As discussed in Ref. [92], the experimental bound and the SM uncertainty

together require that the gluino contribution BR(b → sγ)g̃ < 4× 10−4. The bound

on the CP asymmetry ACP
b→sγ plays no significant role in constraining the parameter

space. Therefore we neglect its discussion here, although we have included it in the

calculation carried out in the same way as in Ref. [93].

The D0 and CDF Collaborations [95] have reported new results for ∆MBS
:

17 ps−1 < ∆MBS
< 21 ps−1 (D0),

∆MBS
= 17.33+0.42

−0.21 ± 0.07 ps−1 (CDF), (5.35)

while the best fit value in SM is ∆MBS
= 17.5 ps−1. Much effort on the theory side

[96, 97] has been generated by this recent experimental result. The result imposes

the constraint |RM | ≡ |MSUSY
12 /MSM

12 | ≤ 4/17, where M12 = 〈B0
s |H∆B=2

eff |B0

s〉. One

should notice that this bound remains valid if one considers the uncertainty in the

SM value and assumes ∆MBS
= 21 ps−1 [97].

105



The decay amplitude of Bd → φKs is given by [93]

ABd→φKs = −i
GF√

2
m2

Bd
FBd→Ks

+ fφ

×
∑

i=1∼10,7γ,8g

Hi(φ)(Ci + C̃i) (5.36)

where fφ = 0.233GeV, and FBd→Ks
+ = 0.35 is the transition form factor evaluated

at transferred momentum of order of mφ. The Hi(φ)’s are dependent on QCDF

parameters ρH,A and φH,A in the following way [93]

H1(φ) ' −0.0002− 0.0002i,

H2(φ) ' 0.011 + 0.009i,

H3(φ) ' −1.23 + 0.089i− 0.005XA − 0.0006X2
A − 0.013XH ,

H4(φ) ' −1.17 + 0.13i− 0.014XH ,

H5(φ) ' −1.03 + 0.053i + 0.086XA − 0.008X2
A,

H6(φ) ' −0.29− 0.022i + 0.028XA − 0.024X2
A + 0.014XH ,

H7(φ) ' 0.52− 0.026i− 0.006XA + 0.004X2
A,

H8(φ) ' 0.18 + 0.037i− 0.019XA + 0.012X2
A − 0.007XH ,

H9(φ) ' 0.62− 0.037i + 0.003XA + 0.0003X2
A + 0.007XH ,

H10(φ) ' 0.62− 0.037i + 0.007XH ,

H7γ(φ) ' −0.0004,

H8g(φ) ' 0.047. (5.37)
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The decay amplitude of Bd → η′Ks is given by [93]

ABd→η′Ks = −i
GF√

2
m2

Bd
FBd→Ks

+ f s
η′

×
∑

i=1∼10,7γ,8g

Hi(η
′)(Ci − C̃i) (5.38)

where the Hi(η
′)’s are dependent on QCDF parameters ρH,A and φH,A in the follow-

ing way [93]

H1(η
′) ' 0.44 + 0.0005i,

H2(η
′) ' 0.076− 0.064i + 0.006XH ,

H3(η
′) ' 2.23− 0.15i + 0.009XA + 0.0008X2

A + 0.014XH ,

H4(η
′) ' 1.76− 0.29i + 0.026XH ,

H5(η
′) ' −1.52 + 0.004XA + 0.008X2

A,

H6(η
′) ' 0.54− 0.029i + 0.006XA + 0.027X2

A + 0.026XH ,

H7(η
′) ' 0.078 + 0.001XA − 0.004X2

A,

H8(η
′) ' −0.58 + 0.02i + 0.004XA − 0.014X2

A − 0.004XH ,

H9(η
′) ' −0.44 + 0.054i + 0.005XA − 0.0004X2

A − 0.007XH ,

H10(η
′) ' −0.80 + 0.02i− 0.004XH ,

H7γ(η
′) ' 0.0007,

H8g(η
′) ' −0.089. (5.39)

The SUSY contribution modifies the CP asymmetries as

SφKS
=

sin2β + 2Rφcosδφsin(θφ + 2β) + R2
φsin(2θφ + 2β)

1 + 2Rφcosδφcosθφ + R2
φ

,

Sη′KS
=

sin2β + 2Rη′cosδη′sin(θη′ + 2β) + R2
η′sin(2θη′ + 2β)

1 + 2Rη′cosδη′cosθη′ + R2
η′

. (5.40)
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The Rφ,η′ , θφ,η′ , and δφ,η′ are defined in the ratio

ASUSY
Bd→φKS

/ASM
Bd→φKS

≡ Rφe
iθφeiδφ

ASUSY
Bd→η′KS

/ASM
Bd→η′KS

≡ Rη′e
iθη′eiδη′ (5.41)

where Rφ,η′ is the absolute value of the ratio, θφ,η′ is the SUSY CP violating weak

phase which depends on the phases in δs, and δφ,η′ = δSM
φ,η′ − δSUSY

φ,η′ is the CP

conserving strong phase depending on φH,A.

Contrary to the B → φK transition, the initial and final states in B → η′K

transition have opposite parity, therefore 〈η′K|Qi|B〉 = −〈η′K|Q̃i|B〉, and Ci and

C̃i appear as (Ci− C̃i) in the amplitude ABd→η′Ks instead of (Ci + C̃i) in ABd→φKs as

shown in Eq. (5.36, 5.38). Since C7γ,8g depends on (δd
LR)23, whereas C̃7γ,8g depends

on (δd
RL)23, this difference makes the correlation between SφKS

and Sη′KS
in the case

with large (δd
LR)23 different from the case with large (δd

RL)23. In fact, as shown in the

general analysis in Ref. [93], the deviations of SφKS
and Sη′KS

from the SM values

are in the same direction if (δd
LR)23 is large and in the opposite direction if (δd

RL)23 is

large. This turns out to be important in the following discussion of the correlation

of SφKS
and Sη′KS

predictions from the model with lopsided structure.

Besides the SUSY parameters (m0,m1/2, A0, tanβ, φµ), the undetermined pa-

rameters ρH,A are constrained by BR(Bd → φKS) to be within ρH,A ≤ 2 [93], and

the strong phase φH,A is not constrained.

By scanning over the allowed ranges of undetermined parameters (m0,m1/2, φµ,

ρH,A, φH,A) and imposing the bound of ∆MBS
, as well as BR(b → sγ) and ACP

b→sγ,

we find the allowed (m0, m1/2) shown in Fig. 5.1: There is a large parameter space
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Figure 5.1: Scatter plot of the parameter space of m0 and m1/2 with the
constraints from BR(b → sγ), ACP

b→sγ and ∆MBS
.

of m0, m1/2 satisfying the bound.

The corresponding predictions of SφKS
and Sη′KS

are shown in Fig. 5.2, from

which we see that the large (δd
RR)23 does push the SφKS

and Sη′KS
off their SM value

0.685. For the purpose of comparison, we set by hand the (δd
RR)23 to be of the size

of (δd
LL)23 , which would be the case without lopsided structure, and present the

corresponding prediction of SφKS
and Sη′KS

in Fig. 5.3, which, together with Fig.

5.2, shows clearly that the large deviation of SφKS
and Sη′KS

from their SM values

are exclusively due to the large (δd
RR)23 of the lopsided models.

While Fig. 5.2 shows that the lopsided structure may explain the anomalies of

both SφKS
and Sη′KS

, the correlation between these two quantities, shown in Fig. 5.4,

indicates an interesting pattern: the large (δd
RL)23 push SφKS

and Sη′KS
in opposite

directions. For points where SφKS
falls below the SM value, the Sη′KS

becomes
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Figure 5.2: Predictions of SφKS
and Sη′KS

corresponding to the points in Fig. 5.1.
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Figure 5.3: Predictions of SφKS
and Sη′KS

in the case that there is no
large (δd

RR)23 and its induced (δd
RL)23.
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Figure 5.4: Scatter plot of predictions of SφKS
and Sη′KS

corresponding
to the points in Fig. 5.1.

larger than SM value, and vice versa. As discussed above, this specific pattern is

intrinsic to the large (δd
RR)23, which induces large (δd

RL)23 yet leaves (δd
LR)23 small.

Therefore, it is tightly associated with the lopsided structure. This specific pattern of

correlation between SφKS
and Sη′KS

means that the lopsided flavor structure cannot

be responsible for both anomalies simultaneously. If future experiments confirm

that SφKS
and Sη′KS

are indeed both significantly smaller than the SM values, the

lopsided SO(10) model is ruled out, unless one assumes that SUSY parameters are

such that large (δd
RR)23 from the lopsided structure makes no significant contribution

to the b → s transition and the SφKS
and Sη′KS

anomalies are from other beyond SM

physics sources. On the other hand, if future experiments show that the deviations

of SφKS
and Sη′KS

from their SM values are in opposite directions, it would be a

strong evidence for the lopsided flavor structure.
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In summary, we point out that a possible correlation between large atmospheric

neutrino mixing and the b → s transition, first discussed in Ref. [82], in fact,

depends exclusively on the lopsided SO(10) structure. We study the prediction of

SφKS
and Sη′KS

from a realistic SO(10) model with lopsided flavor structure with

the constraints from ∆MBS
, and b → sγ applied. We find that both quantities can

show significant deviations from their SM values due to the lopsided structure, but

with a specific type of correlation. We discuss that the specific correlation of the

two quantities can be used to test the flavor structure in future experiments.
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Chapter 6

CONCLUSIONS

As SUSY and GUT are two of the most promising ideas on beyond SM physics,

the details of how these ideas are realized depend on specifics. It is hard to test

these ideas without building realistic models and comparing their predictions with

experiments. The work presented in this thesis follows this spirit.

We present a SUSY SO(10) GUT model with lopsided mass structure. This

model naturally produces large neutrino mixing and small quark mixing. It does

not have the fine-tuning problem present in the previous model of the same type in

the literature. This model fits all the quark and lepton masses, mixing angles, as

well as the CP violation phase in the CKM matrix. The reactor neutrino mixing is

predicted to be large 0.055 ≤ sin22θ13 ≤ 0.110, and is within the reach of the next

generation of reactor experiments.

We further investigate the baryogenesis via leptogenesis in this model and find

right order of magnitude of baryon asymmetry can be produced. Compared with the

previous model on this, which requires another fine-tuning to generate the resonant

enhancement, this model has another advantage.

The most characteristic property of the models with lopsided structure is that

there is a large mixing of right-handed down-type quarks associated with the large

atmospheric neutrino mixing. We propose to probe this mixing in the b → s transi-
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tion. A specific pattern of predictions of the indirect CP violation parameters SφKS

and Sη′KS
in the Bd → φKS and Bd → η′KS decays is found to be associated with

the lopsided structure. This pattern can be used to confirm or rule out this class of

model with future precision measurements of these observables.

There are also other aspects of the model that need be studied in the future.

For instance, it is interesting to study the proton decay. It would place the model

on a more solid basis if one can construct the Higgs potential that generates the

needed Higgs vevs, and if one can find extra global symmetries that lead to those

operators in the model. These topics are beyond the scope of this thesis.

There is a long journey in front of us to pin down the beyond SM physics. In

the past 30 years, the progress of the theoretical particle physics has been mainly

driven by itself. The discovery of neutrino oscillations was certainly a breakthrough.

Hopefully, we will start to know a lot more about the TeV physics with the LHC

producing enough data. We believe a joint effort from both theorists and experi-

mentalists will eventually reveal a new layer of the exciting truth of nature.
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