70 research outputs found

    Genome-wide annotation and comparative analysis of cuticular protein genes in the noctuid pest \u3cem\u3eSpodoptera litura\u3c/em\u3e

    Get PDF
    Insect cuticle is considered an adaptable and versatile building material with roles in the construction and function of exoskeleton. Its physical properties are varied, as the biological requirements differ among diverse structures and change during the life cycle of the insect. Although the bulk of cuticle consists basically of cuticular proteins (CPs) associated with chitin, the degree of cuticular sclerotization is an important factor in determining its physical properties. Spodoptera litura, the tobacco cutworm, is an important agricultural pest in Asia. Compared to the domestic silkworm, Bombyx mori, another lepidopteran whose CP genes have been well annotated, S. litura has a shorter life cycle, hides in soil during daytime beginning in the 5th instar and is exposed to soil in the pupal stage without the protection of a cocoon. In order to understand how the CP genes may have been adapted to support the characteristic life style of S. litura, we searched its genome and found 287 putative cuticular proteins that can be classified into 9 CP families (CPR with three groups (RR-1, RR-2, RR-3), CPAP1, CPAP3, CPF, CPFL, CPT, CPG, CPCFC and CPLCA), and a collection of unclassified CPs named CPH. There were also 112 cuticular proteins enriched in Histidine residues with content varying from 6% to 30%, comprising many more His-rich cuticular proteins than B. mori. A phylogenetic analysis between S. litura, M. sexta and B. mori uncovered large expansions of RR-1 and RR-2 CPs, forming large gene clusters in different regions of S. liturachromosome 9. We used RNA-seq analysis to document the expression profiles of CPs in different developmental stages and tissues of S. litura. The comparative genomic analysis of CPs between S. litura and B. moriintegrated with the unique behavior and life cycle of the two species offers new insights into their contrasting ecological adaptations

    Circadian regulation of night feeding and daytime detoxification in a formidable Asian pest Spodoptera litura

    Get PDF
    Voracious feeding, trans-continental migration and insecticide resistance make Spodoptera litura among the most difficult Asian agricultural pests to control. Larvae exhibit strong circadian behavior, feeding actively at night and hiding in soil during daytime. The daily pattern of larval metabolism was reversed, with higher transcription levels of genes for digestion (amylase, protease, lipase) and detoxification (CYP450s, GSTs, COEs) in daytime than at night. To investigate the control of these processes, we annotated nine essential clock genes and analyzed their transcription patterns, followed by functional analysis of their coupling using siRNA knockdown of interlocked negative feedback system core and repressor genes (SlituClk, SlituBmal1 and SlituCwo). Based on phase relationships and overexpression in cultured cells the controlling mechanism seems to involve direct coupling of the circadian processes to E-boxes in responding promoters. Additional manipulations involving exposure to the neonicotinoid imidacloprid suggested that insecticide application must be based on chronotoxicological considerations for optimal effectiveness

    Lepidopteran wing scales contain abundant cross-linked film-forming histidine-rich cuticular proteins

    Get PDF
    Scales are symbolic characteristic of Lepidoptera; however, nothing is known about the contribution of cuticular proteins (CPs) to the complex patterning of lepidopteran scales. This is because scales are resistant to solubilization, thus hindering molecular studies. Here we succeeded in dissolving developing wing scales from Bombyx mori, allowing analysis of their protein composition. We identified a distinctive class of histidine rich (His-rich) CPs (6%–45%) from developing lepidopteran scales by LC-MS/MS. Functional studies using RNAi revealed CPs with different histidine content play distinct and critical roles in constructing the microstructure of the scale surface. Moreover, we successfully synthesized films in vitro by crosslinking a 45% His-rich CP (BmorCPR152) with laccase2 using N-acetyl- dopamine or N-β-alanyl-dopamine as the substrate. This molecular study of scales provides fundamental information about how such a fine microstructure is constructed and insights into the potential application of CPs as new biomaterials

    A NAC-EXPANSIN module enhances maize kernel size by controlling nucellus elimination

    Get PDF
    Maize early endosperm development is initiated in coordination with elimination of maternal nucellar tissues. However, the underlying mechanisms are largely unknown. Here, we characterize a major quantitative trait locus for maize kernel size and weight that encodes an EXPANSIN gene, ZmEXPB15. The encoded β-expansin protein is expressed specifically in nucellus, and positively controls kernel size and weight by promoting nucellus elimination. We further show that two nucellus-enriched transcription factors (TFs), ZmNAC11 and ZmNAC29, activate ZmEXPB15 expression. Accordingly, these two TFs also promote kernel size and weight through nucellus elimination regulation, and genetic analyses support their interaction with ZmEXPB15. Importantly, hybrids derived from a ZmEXPB15 overexpression line have increased kernel weight, demonstrates its potential value in breeding. Together, we reveal a pathway modulating the cellular processes of maternal nucellus elimination and early endosperm development, and an approach to improve kernel weight

    Unraveling incompatibility between wheat and the fungal pathogen Zymoseptoria tritici through apoplastic proteomics

    Get PDF
    Background: Hemibiotrophic fungal pathogen Zymoseptoria tritici causes severe foliar disease in wheat. However, current knowledge of molecular mechanisms involved in plant resistance to Z. tritici and Z. tritici virulence factors is far from being complete. The present work investigated the proteome of leaf apoplastic fluid with emphasis on both host wheat and Z. tritici during the compatible and incompatible interactions. Results: The proteomics analysis revealed rapid host responses to the biotrophic growth, including enhanced carbohydrate metabolism, apoplastic defenses and stress, and cell wall reinforcement, might contribute to resistance. Compatibility between the host and the pathogen was associated with inactivated plant apoplastic responses as well as fungal defenses to oxidative stress and perturbation of plant cell wall during the initial biotrophic stage, followed by the strong induction of plant defenses during the necrotrophic stage. To study the role of anti-oxidative stress in Z. tritici pathogenicity in depth, a YAP1 transcription factor regulating antioxidant expression was deleted and showed the contribution to anti-oxidative stress in Z. tritici ,but was not required for pathogenicity. This result suggests the functional redundancy of antioxidants in the fungus. Conclusions: The data demonstrate that incompatibility is probably resulted from the proteome-level activation of host apoplastic defenses as well as fungal incapability to adapt to stress and interfere with host cell at the biotrophic stage of the interaction

    Transcriptional Reprogramming of Wheat and the Hemibiotrophic Pathogen <i>Septoria tritici</i> during Two Phases of the Compatible Interaction

    Get PDF
    <div><p>The disease septoria leaf blotch of wheat, caused by fungal pathogen <i>Septoria tritici</i>, is of worldwide concern. The fungus exhibits a hemibiotrophic lifestyle, with a long symptomless, biotrophic phase followed by a sudden transition to necrotrophy associated with host necrosis. Little is known about the systematic interaction between fungal pathogenicity and host responses at specific growth stages and the factors triggering the transition. In order to gain some insights into global transcriptome alterations in both host and pathogen during the two phases of the compatible interaction, disease transition was monitored using pathogenesis-related gene markers and H<sub>2</sub>O<sub>2</sub> signature prior to RNA-Seq. Transcriptome analysis revealed that the slow symptomless growth was accompanied by minor metabolic responses and slightly suppressed defences in the host, whereas necrotrophic growth was associated with enhanced host responses involving energy metabolism, transport, signalling, defence and oxidative stress as well as a decrease in photosynthesis. The fungus expresses distinct classes of stage-specific genes encoding potential effectors, probably first suppressing plant defence responses/facilitating the symptomless growth and later triggering life style transition and inducing host necrosis/facilitating the necrotrophic growth. Transport, signalling, anti-oxidative stress mechanisms and apoplastic nutrient acquisition play important roles in the entire infection process of <i>S. tritici</i>. Our findings uncover systematic <i>S. tritici</i>-induced expression profiles of wheat related to specific fungal infection strategies and provide a transcriptome resource for studying both hosts and pathogens in plant-Dothideomycete interactions. </p></div

    Overview of sequencing transcriptome data from wheat leaves.

    No full text
    <p>Overview of sequencing transcriptome data from wheat leaves.</p

    Functional category distribution in the ten expression clusters of fungal transcripts.

    No full text
    <p>The fungal transcripts were identified from <i>S. tritici</i>-infected wheat at 4, 10 and 13 dai. Expression level of the transcripts was calculated by log<sub>2</sub>FPKM. Histogram representation of the category distribution is expressed as percentage of the amount of transcripts belonging to the cluster. Transcripts coding for unknown products were included in the analysis. The clusters fall into three groups (A, B and C) based on the major profiling over the time course.</p
    • …
    corecore