483 research outputs found

    Immunosuppressants Tacrolimus and Sirolimus revert the cardiac antifibrotic properties of p38-MAPK inhibition in 3D-multicellular human iPSC-heart organoids

    Get PDF
    Immunosuppressive regimens after a heart transplant can hamper good therapeutic progressions in fibrosis. 京都大学プレスリリース. 2022-11-15.より本物の心臓に近い心臓オルガノイドによる薬剤の効果を評価するシステム --細胞間コミュニケーションを研究できるツールの開発--. 京都大学プレスリリース. 2022-11-21.Cardiac reactive fibrosis is a fibroblast-derived maladaptive process to tissue injury that exacerbates an uncontrolled deposition of large amounts of extracellular matrix (ECM) around cardiomyocytes and vascular cells, being recognized as a pathological entity of morbidity and mortality. Cardiac fibrosis is partially controlled through the sustained activation of TGF-β1 through IL-11 in fibroblasts. Yet, preclinical studies on fibrosis treatment require human physiological approaches due to the multicellular crosstalk between cells and tissues in the heart. Here, we leveraged an iPSC-derived multi-lineage human heart organoid (hHO) platform composed of different cardiac cell types to set the basis of a preclinical model for evaluating drug cardiotoxicity and assessing cardiac fibrosis phenotypes. We found that the inhibition of the p38-MAPK pathway significantly reduces COL1A1 depositions. Yet, concomitant treatment with organ-rejection immunosuppressant drugs Tacrolimus or Sirolimus reverts this effect, opening new questions on the clinical considerations of combined therapies in reducing fibrosis after organ transplantation

    Increased levels of RNA oxidation enhance the reversion frequency in aging pro-apoptotic yeast mutants

    Get PDF
    Despite recent advances in understanding the complexity of RNA processes, regulation of the metabolism of oxidized cellular RNAs and the mechanisms through which oxidized ribonucleotides affect mRNA translation, and consequently cell viability, are not well characterized. We show here that the level of oxidized RNAs is markedly increased in a yeast decapping Kllsm4Δ1 mutant, which accumulates mRNAs, ages much faster that the wild type strain and undergoes regulated-cell-death. We also found that in Kllsm4Δ1 cells the mutation rate increases during chronological life span indicating that the capacity to han- dle oxidized RNAs in yeast declines with aging. Lowering intracellular ROS levels by antioxidants recovers the wild- type phenotype of mutant cells, including reduced amount of oxidized RNAs and lower mutation rate. Since mRNA oxidation was reported to occur in different neurodegen- erative diseases, decapping-deficient cells may represent a useful tool for deciphering molecular mechanisms of cell response to such conditions, providing new insights into RNA modification-based pathogenesis

    Statins: Could an old friend help the fight against COVID-19?

    Full text link
    This is the peer reviewed version of the following article: "Statins: Could an old friend help the fight against COVID-19?" . British Journal of Pharmacology (2020): 19 June, which has been published in final form at https://doi.org/10.1111/bph.15166. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versionshe COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has overwhelmed healthcare systems requiring the rapid development of treatments, at least, to reduce COVID-19 severity. Drug repurposing offers a fast track. Here, we discuss the potential beneficial effects of statins in COVID-19 patients based on evidence that they may target virus receptors, replication, degradation, and downstream responses in infected cells, addressing both basic research and epidemiological information. Briefly, statins could modulate virus entry, acting on the SARS-CoV-2 receptors, ACE2 and CD147, and/or lipid rafts engagement. Statins, by inducing autophagy activation, could regulate virus replication or degradation, exerting protective effects. The well-known anti-inflammatory properties of statins, by blocking several molecular mechanisms, including NF-κB and NLRP3 inflammasomes, could limit the "cytokine storm" in severe COVID-19 patients which is linked to fatal outcome. Finally, statin moderation of coagulation response activation may also contribute to improving COVID-19 outcomesThis work and data discussed here were supported by grants from the Instituto de Salud Carlos III (ISCIII) and Fondos FEDER European Union (PI17/00119 and Red de Investigación Renal (REDINREN): RD16/0009, to M.R-O, PI17/01495 to J.E, PI18/01133 to AMR, PI19/00815 to A.O); Comunidad de Madrid (“NOVELREN” B2017/BMD3751 to M.R-O, B2017/BMD-3686 CIFRA2-CM to A.O); Spanish Ministry of Economy and Competitiveness MINECO (DTS17/00203, DTS19/00093) to J,E; “Convocatoria Dinamización Europa Investigación 2019” MINECO (EIN2019-103294 to M.R-O and SR-M); ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071) and DTS18/00032 to A.O; The “Sara Borrell” postdoctoral training program of the ISCIII supported the salary of SR-M (CD19/00021), IMPROVE-PD project (“Identification and Management of Patients at Risk–Outcome and Vascular Events in Peritoneal Dialysis”) funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 812699 to M.R.O

    Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor

    Get PDF
    The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully in vitro. Accurate in vitro models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful in vitro model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled in vitro modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier

    Reaction rates and transport in neutron stars

    Full text link
    Understanding signals from neutron stars requires knowledge about the transport inside the star. We review the transport properties and the underlying reaction rates of dense hadronic and quark matter in the crust and the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes, references updated, overview graphic added in the introduction, improvements in Sec IV.A.

    RNA targeting with CRISPR–Cas13

    Get PDF
    RNA has important and diverse roles in biology, but molecular tools to manipulate and measure it are limited. For example, RNA interference1-3 can efficiently knockdown RNAs, but it is prone to off-target effects4, and visualizing RNAs typically relies on the introduction of exogenous tags5. Here we demonstrate that the class 2 type VI6,7 RNA-guided RNA-targeting CRISPR-Cas effector Cas13a8(previously known as C2c2) can be engineered for mammalian cell RNA knockdown and binding. After initial screening of 15 orthologues, we identified Cas13a from Leptotrichia wadei (LwaCas13a) as the most effective in an interference assay in Escherichia coli. LwaCas13a can be heterologously expressed in mammalian and plant cells for targeted knockdown of either reporter or endogenous transcripts with comparable levels of knockdown as RNA interference and improved specificity. Catalytically inactive LwaCas13a maintains targeted RNA binding activity, which we leveraged for programmable tracking of transcripts in live cells. Our results establish CRISPR-Cas13a as a flexible platform for studying RNA in mammalian cells and therapeutic development.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049

    Higher-dose sitagliptin and the risk of congestive heart failure in older adults with CKD

    Get PDF
    Background and objectives Sitagliptin, a dipeptidylpeptidase-4 inhibitor, is commonlyprescribed to patientswith type 2 diabetes. As this drug is primarily eliminated by the kidney, a reduced dose is recommended for patients with CKD. Some evidence suggests that sitagliptin is associated with a higher risk of congestive heart failure, particularly at higher doses.Wecompare the 1-year risk of death or hospitalizationwith congestive heart failure in patients with CKD newly prescribed sitagliptin at \u3c50 versus ≤50 mg/d. Design, setting, participants, & measurements This population-based cohort study included older adults (\u3e66 years) with type 2 diabetes and an eGFR\u3c45 ml/min per 1.73 m2 (but not receiving dialysis) who were newly prescribed sitagliptin between 2010 and 2017 in Ontario, Canada. We used inverse probability of treatment weighting on the basis of propensity scores to balance baseline characteristics. The primary composite outcome was death or hospitalization with congestive heart failure. Secondary outcomes included hospitalization with pancreatitis or hypoglycemia, all-cause hospitalization, and glycemic control. Weighted hazard ratios were obtained using Cox proportional hazards regression, and 95%confidence intervalswere obtained using bootstrap variance estimators. Results Of 9215 patients, 6518 started sitagliptin at \u3e50 mg/d, and 2697 started sitagliptin at ≤50 mg/d. The 1-year risk of death or hospitalization with congestive heart failure did not differ significantly between groups (79 versus 126 events per 1000 person-years; weighted hazard ratio, 0.88; 95% confidence interval, 0.67 to 1.14); hospitalization with pancreatitis (weighted hazard ratio, 0.98; 95% confidence interval, 0.32 to 3.03) and hypoglycemia (weighted hazard ratio, 1.10; 95% confidence interval, 0.64 to 1.90) also did not differ significantly between groups. Patients starting sitagliptin at \u3e50 mg/d had lower mean glycated hemoglobin concentrations (weighted between-group difference, 20.12%; 95% confidence interval, 20.19 to 20.06) and a lower risk of allcause hospitalization (weighted hazard ratio, 0.81; 95% confidence interval, 0.66 to 0.98). Conclusions The risk of death or congestive heart failure was not higher in older adults with CKD starting sitagliptin at \u3e50 versus ≤50 mg/d

    Health Locus of Control and Assimilation of Cervical Cancer Information in Deaf Women

    Get PDF
    This study assessed the relationship between Deaf women's internal health locus of control (IHLC) and their cervical cancer knowledge acquisition and retention. A blind, randomized trial evaluated Deaf women's (N = 130) baseline cancer knowledge and knowledge gained and retained from an educational intervention, in relation to their IHLC. The Multidimensional Health Locus of Control scales measured baseline IHLC, and a cervical cancer knowledge survey evaluated baseline to post-intervention knowledge change. Women's IHLC did not significantly predict greater cervical cancer knowledge at baseline or over time. IHLC does not appear to be a characteristic that must be considered when creating Deaf women's cancer education programs
    corecore