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Abstract

RNA plays important and diverse roles in biology, but molecular tools to manipulate and measure 

RNA are limited. For example, RNA interference (RNAi)1-3 can efficiently knockdown RNAs, but 

it is prone to off-target effects4, and visualizing RNAs typically relies on the introduction of 

exogenous tags5. Here, we demonstrate that the class 2 type VI6,7 RNA-guided RNA-targeting 

CRISPR-Cas effector Cas13a8 (previously known as C2c2) can be engineered for mammalian cell 

RNA knockdown and binding. After initial screening of fifteen orthologs in E. coli, we identified 

Cas13a from Leptotrichia wadei (LwaCas13a) as the most effective. LwaCas13a can be 

heterologously expressed in mammalian and plant cells for targeted knockdown of either reporter 

or endogenous transcripts. We demonstrate that LwaCas13a is capable of providing comparable 

levels of knockdown as RNAi, but with dramatically improved specificity. Moreover, catalytically 
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inactive LwaCas13a maintains targeted RNA binding, allowing for programmable tracking of 

transcripts in live cells. Our results establish CRISPR-Cas13a as a flexible platform for RNA 

targeting with wide applicability for studying RNA in mammalian cells.

Previous work has shown that Cas orthologs exhibit varying degrees of activity in bacterial 

and mammalian cells9. We therefore evaluated fifteen Cas13a orthologs for PFS preference 

and activity (Extended Data Fig. 1a) using a previously described ampicillin resistance 

bacterial assay8 (Fig. 1a). Cas13a-mediated cleavage of the ß-lactamase (ampicillin 

resistance) transcript results in bacterial death under ampicillin selection, which can be 

measured by quantifying surviving colonies. Using this approach, we found that the Cas13a 

ortholog from L.wadei (LwaCas13a) was most active, followed by the previously 

characterized LshCas13a (Fig. 1b and Extended Data Fig. 1b)8. Next generation sequencing 

analysis of the PFS distributions from LwaCas13a and LshCas13a screens revealed that 

most LwaCas13a PFS sequences were depleted (Extended Data Fig. 1c-e), suggesting robust 

LwaCas13a RNA cleavage activity. Indeed, motif analysis of the depleted PFS sequences at 

varying thresholds revealed the expected 3′ H motif of LshCas13a, but no significant PFS 

motif for LwaCas13a (Fig. 1c and Extended Data Fig. 1f,g). Consistent with these results, 

LwaCas13a was also found to be more active than LshCas13a in our recent work developing 

a nucleic acid sensor and exhibited a weak 3′ H PFS when biochemically characterized10. 

Because of its high activity and lack of PFS in bacteria, we focused on LwaCas13a for 

further development.

In vitro cleavage reactions with LwaCas13a demonstrated programmable RNA cleavage 

with a crRNA encoding a 28 nt spacer, shorter than the 29-30 nt length found in the native L. 
wadei CRISPR array,(Extended Data Figure 2a), confirmed the dramatically higher cleavage 

efficiency of LwaCas13a over LshCas13a (Extended Data Fig 2b-c), and exhibited similar 

biochemical characteristics for the two enzymes (Extended Data Fig. 2d-g and 

Supplementary Note 1). We found that LwaCas13a could cleave the corresponding pre-

crRNA transcript from L. wadei (Extended Data Fig. 2h). We also explored the crRNA 

constraints on LwaCas13a cleavage by truncating the spacer and found that LwaCas13a 

retained in vitro cleavage activity with spacer lengths as short as 20 nt (Extended Data Fig. 

2i). Although guide lengths less than 20 nt no longer display catalytic activity, the 

LwaCas13-crRNA complex may still retain binding activity, providing an opportunity for 

orthogonal applications with a single catalytic enzyme 11.

We next evaluated the ability of LwaCas13a to cleave transcripts in mammalian cells. We 

cloned mammalian codon-optimized LwaCas13a into mammalian expression vectors with 

msfGFP fusions on the C- or N-terminus and either a dual-flanking nuclear export sequence 

(NES) or nuclear localization sequence (NLS) and evaluated expression and localization 

(Fig. 1d). We found that msfGFP-fused LwaCas13a constructs expressed well and localized 

effectively to the cytoplasm or nucleus according to the localization sequence. To evaluate 

the in vivo cleavage activity of LwaCas13a we developed a dual luciferase reporter system, 

which expresses both Gaussia luciferase (Gluc) and Cypridinia luciferase (Cluc) under 

different promoters on the same vector, allowing one transcript to serve as the Cas13a target 

and the other to serve as a dosing control (Fig. 1e). We then designed guides against Gluc 

Abudayyeh et al. Page 2

Nature. Author manuscript; available in PMC 2018 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and cloned them into a tRNAVal-promoter-expressing guide vector. We transfected the 

LwaCas13a expression vector, guide vector, and dual-luciferase construct into HEK293FT 

cells and measured luciferase activity at 48 hours post-transfection. We found that nuclear-

localized LwaCas13a-msfGFP resulted in the highest levels of knockdown (75.7% for guide 

1, 72.9% for guide 2), comparable to position-matched shRNA controls (78.3% for guide 1, 

51.5% for guide 2) (Fig. 1f), which control for accessibility and sequence in the target 

region. Because of the superior cleavage of the LwaCas13a-msfGFP-NLS construct, we 

used this design for all further knockdown experiments. We also find that LwaCas13a yields 

greatest Gluc knockdown with a spacer length of 28 nt (73.8%) (Extended Data Fig. 3a), that 

knockdown is dose-responsive to both the protein and guide transfected vector amounts 

(Extended Data Fig. 3b,c), and that knockdown is not sensitive to RNA polymerase III 

promoter choice. (Extended Data Fig. 3d).

We next tested knockdown in HEK293FT cells on three endogenous genes: KRAS, CXCR4, 

and PPIB. We observed varying levels of knockdown, and for KRAS and CXCR4, 

LwaCas13a knockdown (40.4% for PPIB, 83.9% for CXCR4, 57.5% for KRAS) was similar 

to RNAi with position-matched shRNAs (63.0% for PPIB, 73.9% for CXCR4, 44.3% for 

KRAS) (Fig. 1g). We also found that knockdown of KRAS was flexible to guide promoter 

choice (Extended Data Fig. 3e), that LwaCas13a knockdown was possible in the A375 

melanoma cell line (Extended Data Fig. 3f), and that knockdown was due to the catalytic 

activity of the LwaCas13a (Extended Data Fig. 3g) (Supplementary Note 2). Additionally, 

we tested if LwaCas13a knockdown is efficient in plants. We designed guides against 

transcripts for rice (Oryza sativa) genes and co-transfected LwaCas13a and guide vectors 

into O. sativa protoplasts (Fig. 1h). After transfection, we observed >50% knockdown of for 

all three genes and 7 out of 9 guides tested, with maximal knockdown of 78.0% (Fig. 1i). 

Together, these results suggest that LwaCas13a is able to mediate similar levels of RNA 

knockdown as RNAi.

To comprehensively characterize the dependence of RNA context on the efficiency of 

LwaCas13a knockdown, we harnessed the programmability of LwaCas13a to tile guides 

along the length of four transcripts: Gluc, Cluc, KRAS, and PPIB (Fig. 2a). The Gluc and 

Cluc screens revealed guides with greater than 60% knockdown (Fig. 2b,c), with the 

majority of Gluc targeting guides exhibiting>50% knockdown and up to 83% knockdown. 

To compare LwaCas13a knockdown with RNAi, we selected the top three performing 

guides against Gluc and Cluc and compared them to position-matched shRNAs. We found 

that five out of six top performing guides achieved significantly higher levels of knockdown 

(p <0.05) than their matched shRNA (Extended Data Fig. 3h). For KRAS and PPIB, we 

found that, while knockdown efficiency was transcript dependent, there was maximal 

knockdown of 85% and 75% for KRAS and PPIB, respectively (Fig. 2d,e).

To further understand the efficiency of LwaCas13a knockdown versus RNAi, we compared a 

variety of guides to shRNA constructs that were position matched to the same target region. 

We selected the top three guides from each of the endogenous tiling screens (KRAS and 

PPIB) and observed robust knockdown with LwaCas13a (53.7%-88.8%) equivalent to levels 

attained by shRNA knockdown (61.8%-95.2%), with shRNA significantly better for 2 out of 

Abudayyeh et al. Page 3

Nature. Author manuscript; available in PMC 2018 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6 guides (p <0.01) and LwaCas13a significantly better for 2 out of 6 guides (p <0.01) (Fig. 

2f).

One limitation of current RNAi technology is the difficulty of targeting nuclear transcripts. 

We leveraged the ability of LwaCas13a to function in different cellular compartments to 

knockdown MALAT1 and XIST, which are localized to the nucleus 13, and found varying 

levels of knockdown, with up to as much as 50% knockdown for MALAT1 and 83.9% 

knockdown for XIST (Fig. 2g and Extended Data Fig. 3i), more effective than position-

matched shRNAs, which showed no detectable knockdown (p > 0.05) (Fig. 2h). LshCas13a 

activity is governed by target accessibility in E. coli8, and we therefore used our data from 

the four tiling screens to investigate whether LwaCas13a activity is higher for guides located 

in regions of accessibility. The most effective guides were closer together than expected by 

chance (Extended Data Fig. 4a) and that predicted target accessibility could explain some of 

the variation in targeting efficacy (4.4%-16% of the variation in knockdown) (Extended Data 

Fig. 4b-d and Supplementary Note 2).

Because LwaCas13a can process also its own pre-crRNA, we tested multiplexed delivery of 

LwaCas13a guides as a CRISPR array expressed under a single promoter. We designed five 

different guides against the endogenous PPIB, CXCR4, KRAS, TINCR, and PCAT 
transcripts and delivered the targeting system as a CRISPR array with 28-nt guides flanked 

by 36-nt DR, representing an unprocessed DR and a truncated spacer, under expression of 

the U6 promoter. With this approach, we found levels of knockdown for each gene that were 

comparable to single or pooled guide controls (Fig. 2i). To evaluate specificity in this 

context, we tested multiplexed delivery of three guides against PPIB, CXCR4, and KRAS or 

three variants where each one of the three guides was replaced with a non-targeting guide. 

We found that in each case where a guide was absent from the array, only the targeted 

transcripts were knocked down by LwaCas13a (Fig. 2j).

To investigate the specificity of Cas13a in vivo, we introduced single mismatches into guides 

targeting either Gluc (Fig. 3a) or endogenous genes (Fig. 3b, Extended Data Fig. 5a-b),as 

well as double mismatches (Fig. 3c and Extended Fig. 5c), and found that knockdown was 

sensitive to mismatches in the central seed region of the guide:target duplex, which we 

additionally confirmed by biochemical profiling (Data Fig 5d-k and Supplementary Note 3). 

To comprehensively search for off-target effects of LwaCas13a knockdown, we performed 

transcriptome-wide mRNA sequencing. We targeted the Gluc transcript with LwaCas13a or 

a position matched-shRNA construct, and found significant knockdown of the target 

transcript (p <.01) (Fig. 3d,e). Similar results were found for the same comparison on two 

endogenous genes KRAS and PPIB (p < .05) (Extended Data Figure 6a,b). We characterized 

the number of significant off-targets by differential expression analysis and found hundreds 

of off-targets in each of the shRNA conditions but zero off-targets in LwaCas13a conditions 

(Fig. 3f), despite comparable levels of knockdown of the target transcripts (30.5%, 43.5%, 

and 64.7% for shRNA, 62.6%, 27.1%, and 29.2% for Cas13a, for Gluc, KRAS, and PPIB, 

respectively) (Fig. 3g). We performed additional analysis of the Gluc targeting RNA-seq 

comparisons and found that the shRNA libraries show higher variability between targeting 

and non-targeting conditions compared to Cas13a because of off-target effects (Extended 

Data Fig. 6c-f, 7 and Supplementary Note 4).
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The multiplexed leave-one-out and RNA-seq analyses suggested a lack of sequence-specific 

RNA degradation. We wanted to further confirm a lack of sequence-specific off-target 

cleavage as a result of LwaCas13a targeting by re-analyzing the knockdown tiling screens 

(Fig. 2b-e) and found that the gene control expression in the luciferase and endogenous 

knockdown screens had no significant correlation to expression of the gene targeted for 

knockdown (Gluc: R=-0.078, p > 0.05; PPIB: R= -0.058, p > 0.05; KRAS: R= -0.51, p < 

0.001) (Extended Data Fig. 8a-h), in contrast to what would be expected if the collateral 

effect were present.

The collateral activity of LshCas13a has been directly observed biochemically in vitro and 

indirectly through growth suppression in bacteria8, but the extent of this activity in 

mammalian cells is unclear. We saw no sequence-specific off-target LwaCas13a activity in 

our RNA sequencing experiments, and LwaCas13a-mediated knockdown of targeted 

transcripts did not affect the growth of mammalian cells expressing similar levels of 

LwaCas13a (Fig. 3h). Additionally, there were no detectable gene expression changes, 

indicating that the presence of LwaCas13a targeting does not lead to an observable cell 

stress response at the transcriptomic level14 (Fig. 3d,e and Extended Data Fig. 6a,b). 

Because activation of non-specific RNA nucleases in mammalian cells results in detectable 

changes in RNA size distribution15, we examined global RNA degradation in cells after 

LwaCas13a knockdown of Gluc transcripts and found no difference in the RNA integrity 

between targeting and non-targeting conditions from LwaCas13a knockdown experiments (p 

> 0.05) (Extended Data Fig 8i,j) (Supplementary Note 4).

We mutated catalytic arginine residues in LwaCas13a to generate dCas13a and quantified 

RNA binding by dCas13a with RNA immunoprecipitation (RIP) (Fig. 4a) using guides 

containing the 36-nt DR and 28-nt spacers. We found that pulldown of dCas13a targeted to 

either luciferase transcripts or ACTB mRNA (Fig. 4b) resulted in significant enrichment of 

the corresponding target over non-targeting controls (7.8-11.2× enrichment for luciferase 

and 2.1-3.3× enrichment for ACTB; p < 0.05), validating dCas13a as a reprogrammable 

RNA binding protein.

To engineer dCas13a for in vivo imaging and reduce background noise due to unbound 

protein, we incorporated a negative-feedback system based upon zinc finger self-targeting 

and KRAB domain repression 16 (Fig. 4c and Supplementary Note 5). In comparison to 

dCas13a, dCas13a-NF effectively re-localized when targeted to ACTB mRNA (Extended 

Data Fig. 9a). To further characterize translocation of dCas13a-NF, we targeted ACTB 
transcripts with two guides and found that both guides increased translocation compared to a 

non-targeting guide (3.1-3.7× cellular/nuclear signal ratio; p < 0.001) (Fig. 4d,e and 

Extended Data Fig. 9b-d). To further validate dCas13a-NF imaging, we analyzed the 

correlation of dCas13a-NF signal to ACTB mRNA fluorescent in situ hybridization (FISH) 

signal (Extended Data Fig. 10a) and found that there was significant correlation and signal 

overlap for the targeting guides versus the non-targeting guide conditions (R = 0.27 and 0.30 

for guide 1 and 2, respectively, and R = 0.00 for the non-targeting guide condition; p < 

0.0001) (Extended Data Fig. 10b). To observe a phenotype for mRNA tracking, we 

investigated the accumulation of mRNA into stress granules17,18 by combining dCas13a-NF 

imaging of transcripts with visualization of stress granules marker G3BP121. In fixed 
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samples, we found significant correlations between the dCas13a-NF signal and the G3BP1 
fluorescence for ACTB-targeting guides compared to non-targeting controls (R = 0.49 and 

0.50 for guide 1 and guide 2, respectively, and 0.08 for the non-targeting guide; p < 0.001) 

(Fig. 4f-g) Given co-localization in fixed samples, we next performed stress granule tracking 

in live cells and found that dCas13a-NF targeted to ACTB localized to significantly more 

stress granules per cell over time than the corresponding non-targeting control (p < 0.05) 

(Extended Data Fig. 10c-d and Supplementary Note 6).

The class 2 type VI CRISPR-Cas effector Cas13a can be effectively reprogrammed with 

guide RNAs to knockdown or bind transcripts in mammalian cells. Cas13a knockdown is 

comparable to RNAi knockdown efficiency, but with drastically reduced off-targets, and is a 

versatile platform with the ability for nuclear RNA knockdown, multiplexed gene 

knockdown, and further engineering of the protein for improved functionality. Importantly, 

we do not observe any evidence for collateral activity of LwaCas13a in mammalian cells 

(Supplementary Note 4). RNA knockdown with Cas13a can be applied to perturbing RNAs 

in multiple biological contexts, including genome-wide pooled knockdown screening, 

interrogation of lncRNA and nascent transcript function, allele-specific knockdown, and 

RNA viral therapeutics. In addition, dCas13a and derivatives enable RNA pulldown to study 

RNA-protein interactions, imaging via reconstitution of split fluorophores, translational 

modulation, RNA base editing, epitranscriptomic perturbation, splicing modulation, or 

targeted induction of apoptosis based on RNA expression levels, which would be useful for 

studying specific cell populations or killing cancerous cells. We have shown Cas13a to be a 

robust platform for both programmable knockdown and binding of RNAs in mammalian and 

plant cells, suggesting it may be generally extended to other eukaryotic organisms, paving 

the way for a range of transcriptome analysis tools.

Methods

Cloning of orthologs for activity screen and recombinant expression

We synthesized human codon-optimized versions of fifteen Cas13a orthologs (Genscript, 

Jiangsu, China) (Supplementary Table 9) and cloned them into pACYC184 under expression 

by a pLac promoter. Adjacent to the Cas13a expression cassette, we cloned the ortholog's 

corresponding direct repeats flanking either a β-lactamase targeting or non-targeting spacer. 

Spacer array expression was driven by the J23119 promoter.

For purification of LwaCas13a, we cloned the mammalian codon-optimized LwaCas13a 

sequence into a baterial expression vector for protein purification (6× His/Twin Strep 

SUMO, a pET-based expression vector received as a gift from Ilya Finkelstein, University of 

Texas-Austin).

All plasmids used in this study are listed in Supplementary Table 2. Information on Cas13a 

orthologs used in this study can be found in Supplementary Table 9.

Bacterial in vivo testing for Cas13a activity and PFS identity

Briefly, Cas13a is programmed to target a 5′ stretch of sequence on the β-lactamase 

transcript flanked by randomized PFS nucleotides. Cas13a cleavage activity results in death 
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of bacteria under ampicillin selection and PFS depletion is subsequently analyzed by next 

generation sequencing. In order to allow for quantitative comparisons between orthologs, we 

cloned each Cas13a ortholog under a pLac promoter along with a single-spacer CRISPR 

array nearby under expression of the pJ23119 small RNA promoter.

To test for activity of Cas13a orthologs, 90 ng of ortholog expression plasmids, with either 

targeting or non-targeting guide, was co-transformed with 25 ng of a previously described β-

lactamase target plasmid8 into NovaBlue Singles competent cells (Millipore). Post-

transformation, cells were diluted, plated on LB-agar supplemented with 100 μg/uL 

ampicillin and 25 μg/uL chloramphenicol, and incubated at 37°C overnight. Transformants 

were counted next day.

For determination of LshCas13a and LwaCas13a PFS identity, 40 ng of ortholog expression 

plasmids with either targeting or non-targeting spacer was co-transformed with 25 ng of β-

lactamase target plasmid into 2 aliquots of NovaBlue Giga Singles (Millipore) per biological 

replicate. Two biological replicates were performed. Post-transformation, cells were 

recovered at 37°C in 500 uL of SOC (ThermoFisher Scientific) per biological replicate for 1 

hour, plated on bio-assay plates (Corning) with LB-agar (Affymetrix) supplemented with 

100 μg/uL ampicillin and 25 μg/uL chloramphenicol, and incubated at 37°C for 16 hours. 

Colonies were then harvested by scraping, and plasmid DNA was purified with NuceloBond 

Xtra EF (Macherey-Nagel) for subsequent sequencing.

Harvested plasmid samples were prepared for next generation sequencing by PCR with 

barcoding primers and Illumina flow cell handles using NEBNext High Fidelity 2X Master 

Mix (New England Biosciences). PCR products were pooled and gel extracted using a 

Zymoclean gel extraction kit (Zymo Research) and sequenced using a MiSeq next 

generation sequencing machine (Illumina).

Computational analysis of PFS

From next generation sequencing of the LshCas13a and LwaCas13a PFS screening libraries, 

we aligned the sequences flanking the randomized PFS region and extracted the PFS 

identities. We collapsed PFS identities to 4 nucleotides to improve sequence coverage, 

counted the frequency of each unique PFS, and normalized to total read count for each 

library with a pseudocount of 1. Enrichment of each distribution as displayed in Fig. 1e was 

calculated against the pACYC184 control (no protein/guide locus) as -log2(fcondition/

fpACYC184), where fcondition is the frequency of PFS identities in the experimental condition 

and fpACYC184 is the frequency of PFS identities in the pACYC184 control. For analysis of a 

conserved PFS motif, top depleted PFS identities were calculated using each condition's 

non-targeting control as follows: -log2(fi,targeting/fi,non-targeting) where fi,targeting is the 

frequency of PFS identities in condition i with targeting spacer and fi,non-targeting is the 

frequency of PFS identities in condition i with non-targeting spacer. PFS motifs were 

analyzed for a range of thresholds as shown in Extended Data Figure 1d,e.

Purification of LwaCas13a

Purification of LwaCas13a was performed as previously described10. Briefly, LwaCas13a 

bacterial expression vectors were transformed into Rosetta 2(DE3)pLysS singles Competent 
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Cells (Millipore) and 4 L of Terrific Broth 4 growth media (TB) was seeded with a starter 

culture. Cell protein expression was induced with IPTG and after overnight growth, cell 

pellet was harvested and stored at -80°C. Following cell lysis, protein was bound using a 

StrepTactin Sepharose resin (GE) and protein was eluted by SUMO protease digestion 

(ThermoFisher). Protein was further purified by cation exchange using a HiTrap SP HP 

cation exchange column (GE Healthcare Life Sciences) and subsequently by gel filtration 

using a Superdex 200 Increase 10/300 GL column (GE Healthcare Life Sciences), both steps 

via FPLC (AKTA PURE, GE Healthcare Life Sciences). Final fractions containing 

LwaCas13a protein were pooled and concentrated into Storage Buffer (600 mM NaCl, 50 

mM Tris-HCl pH 7.5, 5% Glycerol, 2 mM DTT) and aliquots were frozen at -80°C for long-

term storage.

Cloning of mammalian expression constructs

The human codon optimized Cas13a gene was synthesized (Genscript) and cloned into a 

mammalian expression vector with either a nuclear export sequence (NES) or nuclear 

localization sequence (NLS) under expression by the EF1-α promoter. Because of the 

stability conferred by monomeric-super-folded GFP (msfGFP), we fused msfGFP to the C-

terminus of LwaCas13a. The full-length direct-repeat of LwaCas13a was used for cloning 

the guide backbone plasmid with expression under a U6 promoter. The catalytically-inactive 

LwaCas13a-msfGFP construct (dead Cas13a or dCas13a) was generated by introducing 

R474A and R1046A mutations in the two HEPN domains. A drug-selectable version of 

LwaCas13a-msfGFP was generated by cloning the protein into a backbone with Blasticidin 

selection marker linked to the C-terminus via a 2A peptide sequence. The negative feedback 

version of the dCas13a-msfGFP construct was generated by cloning zinc-finger binding site 

upstream of the promoter of dCas13a-msfGFP and fusing a Zinc finger and KRAB domain 

to the C-terminus.

The reporter luciferase construct was generated by cloning Cypridinia luciferase (Cluc) 

under expression by CMV and Gaussia luciferase (Gluc) under expression by EF1-α both on 

a single vector. Expression of both luciferases on a single vector allows one luciferase to 

serve as a dosing control for normalization of knockdown of the other luciferase, controlling 

for variation due to transfection conditions.

For the endogenous knockdown experiments in Fig. 1g, guides and shRNAs were designed 

using the RNAxs siRNA design algorithm22. The prediction tool was used to design shRNAs 

and guides were designed in the same location to allow for comparison between shRNA and 

Cas13a knockdown.

The rice actin promoter (pOsActin) was PCR amplified from pANIC6A23 and each Cas13a 

was PCR amplified from existing Cas13a constructs. These fragments were ligated into 

existing plant expression plasmids such that each Cas13a was driven by the rice actin 

promoter and transcription was terminated by the HSP terminator. Cas13a gRNAs were 

expressed from the rice U6 promoter (pOsU6). The gRNA target sequence was identical for 

each gene whereas the scaffold sequence was Cas13a-specific. In these experiments, we 

targeted the rice 5-enolpyruvylshikimate-3-phosphate synthase (OsEPSPS) gene, which is 

the target of glyphosate-based herbicides, and the rice hydroxycinnamoyl-CoA shikimate/
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quinate hydroxycinnamoyl transferase (OsHCT) gene, which is necessary for proper plant 

growth.

All guides and shRNAs used in this study are listed in Supplementary Tables 1 and 3.

Protoplast Preparation

Green rice protoplasts (Oryza sativa L. ssp. japonica var. Nipponbare) were prepared as 

previously described24 with slight modifications. Seedlings were grown for 14 days and 

protoplasts resuspended in MMG buffer containing 0.1 M CaCl2. This modified MMG 

buffer was used to prepare fresh 40% PEG buffer as well as in place of WI buffer. Finally, 

protoplasts were kept in total darkness for 48 hours post-transformation. All other conditions 

were as previously described.

Nucleic acid target and crRNA preparation for in vitro reactions and collateral activity

For generation of nucleic acid targets, oligonucleotides were PCR amplified with KAPA Hifi 

Hot Start (Kapa Biosystems). dsDNA amplicons were gel extracted and purified using a 

MinElute gel extraction kit (Qiagen). The resulting purified dsDNA was transcribed via 

overnight incubation at 30°C with the HiScribe T7 Quick High Yield RNA Synthesis kit 

(New England Biolabs). Transcribed RNA was purified using the MEGAclear Transcription 

Clean-up kit (Thermo Fisher). All RNA targets used in this study are listed in 

Supplementary Table 4 and 6.

To generate crRNAs, oligonucleotides were ordered as DNA (Integrated DNA Technologies) 

with an additional 5′ T7 promoter sequence. crRNA template DNA was annealed with a T7 

primer (final concentrations 10 uM) and transcribed via overnight incubation at 37°C with 

the HiScribe T7 Quick High Yield RNA Synthesis kit (New England Biolabs). The resulting 

transcribed crRNAs were purified with RNAXP clean beads (Beckman Coulter), using a 2× 

ratio of beads to reaction volume, supplemented with additional 1.8× ratio of isopropanol 

(Sigma). crRNA constructs used for in vitro experiments study are listed in Supplementary 

Table 5 and crRNA constructs used for collateral detection are listed in Supplementary Table 

6.

LwaCas13a cleavage and collateral activity detection

For biochemical characterization of LwaCas13a, assays were performed as previously 

described8. Briefly, nuclease assays were performed with 160 nM of end-labeled ssRNA 

target, 200 nM purified LwaCas13a, and 100 nM crRNA, unless otherwise indicated. All 

assays were performed in nuclease assay buffer (40 mM Tris-HCl, 60 mM NaCl, 6 mM 

MgCl2, pH 7.3). For array processing, 100 ng of in vitro transcribed array was used per 

nucelease assay. Reactions were allowed to proceed for 1 hour at 37°C (unless otherwise 

indicated) and were then quenched with proteinase buffer (proteinase K, 60 mM EDTA, and 

4 M Urea) for 15 minutes at 37°C. The reactions were then denatured with 4.5 M urea 

denaturing buffer at 95°C for 5 minutes. Samples were analyzed by denaturing gel 

electrophoresis on 10% PAGE TBE-Urea (Invitrogen) run at 45°C. Gels were imaged using 

an Odyssey scanner (LI-COR Biosciences).
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Collateral activity detection assays were performed as previously described25. Briefly, 

reactions consisted of 45 nM purified LwaCas13a, 22.5 nM crRNA, 125 nM quenched 

fluorescent RNA reporter (RNAse Alert v2, Thermo Scientific), 2 μL murine RNase 

inhibitor (New England Biolabs), 100 ng of background total human RNA (purified from 

HEK293FT culture), and varying amounts of input nucleic acid target, unless otherwise 

indicated, in nuclease assay buffer (40 mM Tris-HCl, 60 mM NaCl, 6 mM MgCl2, pH 7.3). 

Reactions were allowed to proceed for 1-3 hr at 37°C (unless otherwise indicated) on a 

fluorescent plate reader (BioTek) with fluorescent kinetics measured every 5 min.

RNA extraction and qRT-PCR

Total RNA was isolated after 48 hours of incubation using Trizol and the accompanying 

protocol. One nanogram of total RNA was used in the SuperScript III Plantinum SYBR 

Green One-Step qRT-PCR Kit (Invitrogen) using the accompanying protocol. All samples 

were run in technical triplicate of three biological replicates in a 384-well format on a 

LightCycler 480 Instrument (Roche). All PCR primers were verified as being specific based 

on melting curve analysis and are as follows: OsEPSPS (Os06g04280), 5′ – TTG CCA 

TGA CCC TTG CCG TTG TTG – 3′ and 5′ – TGA TGA TGC AGT AGT CAG GAC CTT 

– 3′; OsHCT (Os11g07960), 5′ – CAA GTT TGT GTA CCC GAG GAT TTG – 3′ and 5′ 
– AGC TAG TCC CAA TAA ATA TGC GCT – 3′; OsEF1a (Os03g08020), 5′ – CTG TAG 

TCG TTG GCT GTG GT – 3′ and 5′ – CAG CGT TCC CCA AGA AGA GT – 3′. Primers 

for OsEF1a were previously described26. All data are presented as the mean plus/minus the 

standard error with each sample relative to the expression of EF1a.

Cloning of tiling guide screens

For tiling guide screens, spacers were designed to target mRNA transcripts at even intervals 

to fully cover the entire length of the transcript. Spacers were ordered from IDT, annealed, 

and golden-gate cloned into LwaCas13a guide expression constructs with either a tRNAval 

promoter, for Gluc and Cluc screens, or U6 promoter, for all endogenous screens.

Mammalian cell culture and transfection for knockdown with LwaCas13a

All mammalian cell experiments were performed in the HEK293FT line (ATCC) unless 

otherwise noted. HEK293FT cells were cultured in Dulbecco's Modified Eagle Medium 

with high glucose, sodium pyruvate, and GlutaMAX (Thermo Fisher Scientific) 

supplemented with 10% fetal bovine serum (VWR Seradigm) and 1X Penicillin-

Streptomycin (Thermo Fisher Scientific). Cells were passaged to maintain confluency below 

70%. For experiments involving A375 (ATCC), cells were cultured in RPMI Medium 1640 

(Thermo Fisher Scientific) supplemented with 9% fetal bovine serum (VWR Seradigm) and 

1X Penicillin-Streptomycin (Thermo Fisher Scientific).

To test knockdown of endogenous genes, Lipofectamine 2000 (Thermo Fisher Scientific) 

transfections were performed with 150 ng of LwaCas13a plasmid and 250 ng of guide 

plasmid per well, unless otherwise noted. Experiments testing knockdown of reporter 

plasmids were supplemented with 12.5 ng reporter construct per well. 16 hours prior to 

transfection, cells were plated in 96-well plates at approximately 20,000 cells/well and 

allowed to grow to 90% confluency overnight. For each well, plasmids were combined with 
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Opti-MEM® I Reduced Serum Medium (Thermo Fisher) to a total of 25 uL, and separately 

0.5 uL of Lipofectamine 2000 was combined with 24.5 uL of Opti-MEM. Plasmid and 

lipofectamine solutions were then combined, incubated for 5 min, and slowly pipetted onto 

cells to prevent disruption.

Transformation of green rice protoplasts

For the green rice experiments, plasmids expressing each LwaCas13a and the corresponding 

guide RNA were mixed in equimolar ratios such that a total of 30mg of DNA was used to 

transform a total of 200,000 protoplasts per transformation.

Measurement of luciferase activity

Media containing secreted luciferase was harvested at 48 hours post transfection, unless 

otherwise noted. Media was diluted 1:5 in PBS and then luciferase activity was measured 

using the BioLux Cypridinia and Biolux Gaussia luciferase assay kits (New England 

Biolabs) on a Biotek Synergy 4 plate reader with an injection protocol. All replicates were 

performed as biological replicates.

Harvest of total RNA and quantitative PCR

For gene expression experiments, cell harvesting and reverse transcription for cDNA 

generation was performed using a previously described modification27 of the commercial 

Cells-to-Ct kit (Thermo Fisher Scientific) 48 hours post-transfection. Transcript expression 

was then quantified with qPCR using Fast Advanced Master Mix (Thermo Fisher Scientific) 

and TaqMan qPCR probes (Thermo Fisher Scientific, Supplementary Table 7 and 8) with 

GAPDH control probes (Thermo Fisher Scientific). All qPCR reactions were performed in 

5uL reactions with 4 technical replicates in 384-well format, and read out using a 

LightCycler 480 Instrument II (Roche). For multiplexed targeting reactions, readout of 

different targets was performed in separate wells.

Expression levels were calculated by subtracting housekeeping control (GAPDH) Ct values 

from target Ct values to normalize for total input, resulting in ΔCt levels. Relative transcript 

abundance was computed as 2˄(-ΔCt). All replicates were performed as biological replicates

For analysis of RNA quality post-knockdown with LwaCas13a, total RNA was harvested by 

lysing cells using TRI Reagent® and purifying the RNA using the Direct-zol RNA MiniPrep 

Plus kit (Zymo). 4 ng of total RNA was analyzed using a RNA 6000 Pico Bioanalyzer kit 

(Agilent).

Computational analysis of target accessibility

To first analyze target accessibility, top guides from the tiling screen were analyzed to 

determine whether they grouped closer together than expected under the assumption that if 

there were regions of accessibility, multiple guides in that region would be expected to be 

highly active. Top guides were defined as the top 20% performing guides for the Gluc tiling 

screen and top 30% performing guides for the Cluc, KRAS, and PPIB tiling screens. A null 

probability distribution was generated for pair-wise distances between guides by randomly 
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simulated 10,000 guide positions and then compared to experimentally determined top guide 

pair-wise distances.

Accessibility was predicted using the RNApl fold algorithm in the Vienna RNA software 

suite28. The default window size of 70 nt was used and probability of a target region being 

unpaired was calculated as the average of the 28 single-nucleotide unpaired probabilities 

across the target region. These accessibility curves were smoothened and compared to 

smoothened knockdown curves across each of the four transcripts and correlations between 

the two factors were computed using Pearson's correlation coefficient. The probability space 

of these two factors was also visualized by performing 2D kernel density estimation across 

the two variables.

RNA sequencing and analysis

For specificity analysis of LwaCas13a knockdown,RNA sequencing was performed on 

mRNA from knockdown experiments involving both LwaCas13a and shRNA constructs. 

Total RNA was prepared from transfection experiments after 48 hours using the Qiagen 

RNeasy Plus Mini mit. mRNA was then extracted using the NEBNext Poly(A) mRNA 

Magnetic Isolation Module and RNA-seq libraries were prepared using the NEBNext Ultra 

Directional RNA Library Prep Kit for Illumina. RNA-sequencing libraries were sequenced 

on an Illumina NextSeq instrument with at least 10M reads per library.

An index was generated using the RefSeq GRCh38 assembly and reads were aligned and 

quantified using Bowtie and RSEM v1.2.31 using default parameters29. Transcript per 

million (TPM) values were used for expression counts and were transformed to log-space by 

taking the log2(TPM+1).

To find differentially expressed genes, Student's t-test was performed on the three targeting 

replicates versus the three non-targeting replicates. The statistical analysis was only 

performed on genes that had a log2(TPM+1) value greater than 2.5 in at least two of the 6 

replicates. Only genes that had a differential expression greater than 2 or less than 0.75 and a 

false discovery rate < 0.10 were reported to be significantly differentially expressed.

Cross-correlations between replicates and averages of replicates were performed using 

Kendall's tau coefficient. The variation of shRNA vs Cas13a libraries was analyzed by 

considering the distribution of standard deviations for gene expression across the 6 replicates 

(3 targeting and 3 non-targeting replicates) and plotted as violin plots.

Cell viability assay

Mammalian cells were transfected with luciferase reporter target, guide plasmid, and either 

LwaCas13a or drug-selectable LwaCas13a. 24 hours post-transfection, cells were split 1:5 

into fresh media and drug-selectable LwaCas13a samples were supplemented with 10 ug/mL 

Blasticidin S (Thermo Fisher Scientific). After 48 hours of additional growth, cells were 

assayed for luciferase knockdown, maintenance of LwaCas13a expression via GFP 

fluorescence measurement on a multimode plate reader (Biotek Neo2), and cell growth by 

CellTiter-Glo® Luminescent Cell Viability Assay (Promega).
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Quantifying dCas13a binding with RIP

For RNA immunoprecipitation experiments, HEK293FT cells were plated in 6-well plates 

and transfected with 1.3 ug of dCas13a expression plasmid and 1.7 ug of guide plasmid, 

with an additional 150 ng of reporter plasmid for conditions involving reporter targeting. 48 

hours post transfection, cells were washed twice with ice-cold PBS (Sigma) and fixed with 

0.2% paraformaldehyde (Electron Microscopy Sciences) in PBS for 15 min at room 

temperature. After fixation, the paraformaldehyde was removed, 125 mM glycine in PBS 

was added to quench crosslinking, and the cells were incubated for 10 minutes. Cells were 

washed twice again with ice-cold PBS, harvested by scraping, and the cell suspension was 

centrifuged at 800 g for 4 min to pellet the cells. The supernatant was removed and the pellet 

was washed with PBS prior to lysis. Cells were lysed with 200 μL of 1X RIPA Buffer (Cell 

Signaling) supplemented with cOmplete™ ULTRA Tablets, EDTA-free (Sigma) and 

Ribonuclease inhibitor (Sigma R1158). Cells were allowed to lyse on ice for 10 min and 

then sonicated for 2 min with a 30 sec on/30 sec off cycle at low intensity on a Bioruptor 

sonicator (Diagenode). Insoluble material pelleted by centrifugation at 16,000 g for 10 min 

at 4°C, and the supernatant containing cleared lysate was used for pulldown with magnetic 

beads.

To conjugate antibodies to magnetic beads, 100 μL/sample of Dynabeads® Protein A for 

Immunoprecipitation (Thermo Fisher Scientific) were pelleted by application of a magnet, 

and the supernatant was removed. Beads were resuspended in 200 μL of wash buffer (PBS 

supplemented with 0.02% Tween-20 (Sigma)) and 5 μg of rabbit anti-Mouse IgG (Sigma 

M7023) was added. The sample was incubated for 10 min at room temperature on a rotator 

to allow antibody to conjugate to the beads. After incubation, beads were pelleted via 

magnet, supernatant was removed, and beads were washed twice with wash buffer. The 

pellet was resuspended in 100 μL wash buffer and split into two 50 μL volumes for 

conjugation of anti-HA antibody (Thermo Fisher Scientific 26183) or IgG antibody control 

(Sigma I5381). For each antibody, 2.5 μg of antibody was added with 200 μL wash buffer 

and incubated for 10 min at room temperature on a rotator. Post-incubation, beads were 

pelleted via magnet and washed twice with wash buffer, and resuspended in 200 μL 1X 

RIPA with Ribonuclease inhibitor (Sigma R1158) and protease inhibitor cocktail (Sigma 

P8340). 100 μL of sample lysate was added to beads and rotated overnight at 4°C.

After incubation with sample lysate, beads were pelleted, washed three times with 1X RIPA, 

0.02% Tween-20, and then washed with DNase buffer (350 mMTris-HCl [pH 6.5]; 50 mM 

MgCl2; 5 mM DTT). Beads were resuspended in DNase buffer and TURBO DNase (Life 

Technologies) was added to final concentration of 0.08 units/μl. DNase was incubated 30 

min at 37C on a rotator. Proteins were then digested by addition of Proteinase K (New 

England Biosciences) to a final concentration of 0.1 units/μl and incubated at 37°C with 

rotation for an additional 30 min. For denaturation and purification, urea (Sigma) was added 

to a final concentration of 2.5 M, samples were incubated for 30 min, and RNA was purified 

using a Direct-Zol RNA miniprep (Zymo Research). Purified RNA was reverse transcribed 

to cDNA using the qScript Flex cDNA (Quantabio) and pulldown was quantified with qPCR 

using Fast Advanced Master Mix and TaqMan qPCR probes (Supplementary Table 7 and 8). 

All qPCR reactions were performed in 5 μL reactions with 4 technical replicates in 384-well 
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format, and read out using a LightCycler 480 Instrument II. Enrichment was quantified for 

samples as compared to their matched IgG antibody controls.

Translocation measurement of LwaCas13a and LwaCas13a-NF

HEK293FT cells were plated in 24-well tissue culture plates on poly-D-lysine coverslips 

(Corning) and transfected with 150ng dCas13a-NF vector and 300 ng guides for imaging 

ACTB. For translocation experiments, cells were fixed with 4% PFA and permeabilized with 

0.2% Triton X-100 after 48 hours and mounted using anti-fade mounting medium with 

DAPI (Vectashield). Confocal microscopy was performed using a Nikon Eclipse Ti1 with 

Andor Yokagawa Spinning disk Revolution WD system.

Nuclear export of dCas13a-NF-msfGFP with guides targeting ACTB mRNA was analyzed 

by measuring the average cytoplasmic and nuclear msfGFP fluorescence and comparing the 

ratio across many cells between targeting and non-targeting conditions.

Fluorescent in situ hybridization (FISH) of ACTB transcript

HEK293FT cells were plated in 24-well tissue culture plates on poly-D-lysine coverslips 

(Corning) and transfected with 75 ng dCas13a-NF vector and 250 ng guides for imaging 

ACTB. After 48 hours, cells were fixed with 4% PFA for 45 minutes. The QuantiGene view 

RNA ISH Cell assay kit (Affymetrix) was used for performing the FISH on the cell samples 

and the protocol was followed as described by the manufacturer. After finishing the FISH 

procedure, coverslips were mounted using anti-fade mounting medium (Vectashield). 

Confocal microscopy was performed using a Nikon Eclipse Ti1 with Andor Yokagawa 

Spinning disk Revolution WD system.

Tracking of LwaCas13a to stress granules

HEK293FT cells were plated in 24-well tissue culture plates on poly-D-lysine coverslips 

(Corning) and transfected with 75 ng dCas13a-NF vector and 250 ng guides for imaging 

ACTB. For stress granule experiments, 200 μM sodium arsenite was applied for 1 hour prior 

to fixing and permeabilizing the cells. For immunofluorescence of G3BP1, cells were 

blocked with 20% goat serum, and incubated over night at room temperature with anti-

G3BP1 primary antibody (Abnova H00010146-B01P). Cells were then incubated with 

secondary antibody labeled with Alexa Fluor 594 and mounted using anti-fade mounting 

medium with DAPI (Vectashield). Confocal microscopy was performed using a Nikon 

Eclipse Ti1 with Andor Yokagawa Spinning disk Revolution WD system.

Stress granule co-localization with dCas13a-NF-msfGFP was calculated using the average 

msfGFP and G3BP1 signal per cell using Pearson's correlation coefficient. The 

colocalization analyses were performed in the image analysis software FIJI 30 using the 

Coloc 2 plugin.

For live imaging experiments, HEK293FT cells were plated in 96-well tissue culture plates 

and transfected with 150 ng dCas13a-NF vector, 300 ng guides for imaging ACTB, and 5 ng 

of G3BP1-RFP reporter. After 48 hours, the cells were subjected to 0 μM or 400 μM sodium 

arsenite and imaged every 15 minutes every 2 hours on an Opera Phenix High Content 
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Screening System (PerkinElmer) using the spinning disk confocal setting with 20× water 

objective. Cells were maintained at 37°C in a humidified chamber with 50% CO2. Live cell 

dCas13a-NF-msfGFP colocalization with G3BP1-RFP in stress granules was measured 

using the Opera Phenix Harmony software (PerkinElmer).

Extended Data

Extended Data Fig. 1. Evaluation of LwaCas13a PFS preferences and comparisons to LshCas13a
a, Sequence comparison tree of the fifteen Cas13a orthologs evaluated in this study. b, 
Ratios of in vivo activity from Fig. 1B. c, Distributions of PFS enrichment for LshCas13a 

and LwaCas13a in targeting and non-targeting samples. d, Number of LshCas13a and 

LwaCas13a PFS sequences above depletion threshold for varying depletion thresholds. e, 
Distributions of PFS enrichment for LshCas13a and LwaCas13a in targeting samples, 

normalized to non-targeting samples. f, Sequence logos and counts for remaining PFS 

sequences after LshCas13a cleavage at varying enrichment cutoff thresholds. g, Sequence 

logos and counts for remaining PFS sequences after LwaCas13a cleavage at varying 

enrichment cutoff thresholds.
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Extended Data Fig. 2. Biochemical characterization of LwaCas13a RNA cleavage activity
a, LwaCas13a has more active RNAse activity than LshCas13a. b, Gel electrophoresis of 

ssRNA1 after incubation with LwaCas13a and with and without crRNA 1 for varying 

amounts of times. c, Gel electrophoresis of ssRNA1 after incubation with varying amounts 

of LwaCas13a-crRNA complex. d, Sequence and structure of ssRNA 4 and ssRNA 5. 

crRNA spacer sequence is highlighted in blue. e, Gel electrophoresis of ssRNA 4 and 

ssRNA 5 after incubation with LwaCas13a and crRNA 1. f, Sequence and structure of 

ssRNA 4 with sites of poly-x modifications highlighted in red. crRNA spacer sequence is 

highlighted in blue. g, Gel electrophoresis of ssRNA 4 with each of 4 possible poly-x 

modifications incubated with LwaCas13a and crRNA 1. h, LwaCas13a can process pre-

crRNA from the L. wadei CRISPR-Cas locus. i, Cleavage efficiency of ssRNA 1 for crRNA 

spacer truncations after incubation with LwaCas13a.
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Extended Data Fig. 3. Engineering and optimization of LwaCas13a for mammalian knockdown
a, Knockdown of Gluc transcript by LwaCas13a and Gluc guide 1 spacers of varying length. 

b, Knockdown of Gluc transcript with Gluc guide 1 and varying amounts of transfected 

LwaCas13a plasmid. c, Knockdown of Gluc transcript by LwaCas13a and varying amounts 

of transfected Gluc guide 1 and 2 plasmid. d, Knockdown of Gluc transcript using guides 

expressed from either U6 or tRNAVal promoters. e, Knockdown of KRAS transcript using 

guides expressed from either U6 or tRNAVal promoters. f, Knockdown of KRAS and CXC4 
transcripts by LwaCas13a using guides transfected in A375 cells with shRNA comparisons. 

g, Knockdown of Gluc transcript and endogenous transcripts PPIB, KRAS,and CXCR4 with 

active and catalytically dead Cas13a. h, Validation of the top three guides from the arrayed 

knockdown Gluc and Cluc screens with shRNA comparisons. i, Arrayed knockdown screen 

of 93 guides evenly tiled across the XIST transcript. All values are mean ± SEM with n = 3. 

**p< 0.01; *p< 0.05. ns = not significant. A two-tailed student's T-test was used for 

comparisons.
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Extended Data Fig. 4. LwaCas13a targeting efficiency is influenced by accessibility along the 
transcript
a, First row: Top knockdown guides are plotted by position along target transcript. The top 

20% of guides are chosen for Gluc and top 30% of guides for Cluc, KRAS, and PPIB. 

Second row: Histograms for the pairwise distance between adjacent top guides for each 

transcript (blue) compared to a random null-distribution (red). Inset shows the cumulative 

frequency curves for these histograms. A shift of the blue curve (actual measured distances) 

to the left of the red curve (null distribution of distances) indicates that guides are closer 

together than expected by chance. b, Gluc, Cluc, PPIB, and KRAS knockdown partially 

correlates with target accessibility as measured by predicted folding of the transcript. 

c,Kernel density estimation plots depicting the correlation between target accessibility 

(probability of a region being base-paired) and target expression after knockdown by 

LwaCas13a. d, First row: Correlations between target expression and target accessibility 

(probability of a region being base-paired) measured at different window sizes (W) and for 

different k-mer lengths. Second row: P-values for the correlations between target expression 

and target accessibility (probability of a region being base-paired) measured at different 

window sizes (W) and for different k-mer lengths. The color scale is designed such that p-

values > 0.05 are shades of red and p-values < 0.05 are shades of blue.
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Extended Data Fig. 5. Detailed evaluation of LwaCas13a sensitivity to mismatches in the 
guide:target duplex at varying spacer lengths
a, Knockdown of KRAS evaluated with guides containing single mismatches at varying 

positions across the spacer sequence. b, Knockdown of PPIB evaluated with guides 

containing single mismatches at varying positions across the spacer sequence. c, Knockdown 

of Gluc evaluated with guides containing non-consecutive double mismatches at varying 

positions across the spacer sequence. The wild-type sequence is shown at the top with 

mismatch identities shown below. d, Collateral cleavage activity on ssRNA 1 and 2 for 

varying spacer lengths. (n=4 technical replicates; bars represent mean ± s.e.m.) e, Specificity 

ratios of guide tested in (d). Specificity ratios are calculated as the ratio of the on-target 

RNA (ssRNA 1) collateral cleavage to the off-target RNA (ssRNA 2) collateral cleavage. 

(n=4 technical replicates; bars represent mean ± s.e.m.) f, Collateral cleavage activity on 

ssRNA 1 and 2 for 28 nt spacer crRNA with synthetic mismatches tiled along the spacer. 

(n=4 technical replicates; bars represent mean ± s.e.m.) g, Specificity ratios, as defined in 

(e), of crRNA tested in (f). (n=4 technical replicates; bars represent mean ± s.e.m.) h, 
Collateral cleavage activity on ssRNA 1 and 2 for 23 nt spacer crRNA with synthetic 

mismatches tiled along the spacer. (n=4 technical replicates; bars represent mean ± s.e.m.) i, 
Specificity ratios, as defined in (e), of crRNA tested in (h). (n=4 technical replicates; bars 

represent mean ± s.e.m.) j, Collateral cleavage activity on ssRNA 1 and 2 for 20 nt spacer 

crRNA with synthetic mismatches tiled along the spacer. (n=4 technical replicates; bars 

represent mean ± s.e.m.) k, Specificity ratios, as defined in (e), of crRNA tested in (j). (n=4 

technical replicates; bars represent mean ± s.e.m.).
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Extended Data Fig. 6. LwaCas13a is more specific than shRNA knockdown on endogenous 
targets
a, Left: Expression levels in log2(transcripts per million (TPM)) values of all genes detected 

in RNA-seq libraries of non-targeting shRNA-transfected control (x-axis) compared to 

KRAS-targeting shRNA (y-axis). Shown is the mean of three biological replicates. The 

KRAS transcript data point is colored in red. Right: Expression levels in log2(transcripts per 

million (TPM)) values of all genes detected in RNA-seq libraries of non-targeting 

LwaCas13a-guide-transfected control (x-axis) compared to KRAS-targeting LwaCas13a-

guide (y-axis). Shown is the mean of three biological replicates. The KRAS transcript data 

point is colored in red. b, Left: Expression levels in log2(transcripts per million (TPM)) 

values of all genes detected in RNA-seq libraries of non-targeting shRNA-transfected 

control (x-axis) compared to PPIB-targeting shRNA (y-axis). Shown is the mean of three 

biological replicates. The PPIB transcript data point is colored in red. Right: Expression 

levels in log2(transcripts per million (TPM)) values of all genes detected in RNA-seq 

libraries of non-targeting LwaCas13a-guide-transfected control (x-axis) compared to PPIB-

targeting LwaCas13a-guide (y-axis). Shown is the mean of three biological replicates. The 

PPIB transcript data point is colored in red. c, Comparisons of individual replicates of non-

targeting shRNA conditions (first row) and Gluc-targeting shRNA conditions (second row). 

d, Comparisons of individual replicates of non-targeting guide conditions (first row) and 
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Gluc-targeting guide conditions (second row). e, Pairwise comparisons of individual 

replicates of non-targeting shRNA conditions against the Gluc-targeting shRNA conditions. 

f, Pairwise comparisons of individual replicates of non-targeting guide conditions against the 

Gluc-targeting guide conditions.

Extended Data Fig. 7. Detailed analysis of LwaCas13a and RNAi knockdown variability 
(standard deviation) across all samples
a, Heatmap of correlations (Kendall's tau) for log2(transcripts per million (TPM+1)) values 

of all genes detected in RNA-seq libraries between targeting and non-targeting replicates for 

shRNA or guide targeting either luciferase reporters or endogenous genes. b, Heatmap of 

correlations (Kendall's tau) for log2(transcripts per million (TPM+1)) values of all genes 

detected in RNA-seq libraries between all replicates and perturbations. c,Distributions of 

standard deviations for log2(transcripts per million (TPM+1)) values of all genes detected in 

RNA-seq libraries among targeting and non-targeting replicates for each gene targeted for 

either shRNA or guide.
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Extended Data Fig. 8. LwaCas13a knockdown is specific to the targeted transcript with no 
activity on a measured off-target transcript
a, Heatmap of absolute Gluc signal for first 96 spacers tiling Gluc. b, Heatmap of absolute 

Cluc signal for first 96 spacers tiling Gluc. c, Relationship between absolute Gluc signal and 

normalized luciferase for Gluc tiling guides. d, Relationship between absolute Cluc signal 

and normalized luciferase for Gluc tiling guides. e, Relationship between PPIB 2-Ct levels 

and PPIB knockdown for PPIB tiling guides. f, Relationship between GAPDH 2-Ct levels 

and PPIB knockdown for PPIB tiling guides. g, Relationship between KRAS 2-Ct levels and 

KRAS knockdown for KRAS guides. h, Relationship between GAPDH 2-Ct levels and 

KRAS knockdown for KRAS guides. i, Bioanalyzer traces of total RNA isolated from cells 

transfected with Gluc-targeting guides 1 and 2 or non-targeting guide from the experiment 

with active Cas13a in Extended Data Fig. 3g. The RNA-integrity number (RIN) is shown 

and 18S rRNA and 28S rRNA peaks are labeled above. A student's t-test shows no 

significant difference for the RIN between either of the targeting conditions and the non-

targeting condition. The curves are shown as a mean of three replicates and the shaded area 

in red around the curves show the s.e.m. j, The Bioanalyzer trace for the RNA ladder with 

peak sizes labeled above.
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Extended Data Fig. 9. dCas13a-NF can be used for ACTB imaging
a, Comparison between localization of dCas13-GFP and dCas13a-GFP-KRAB constructs 

for imaging ACTB. Scale bars, 10μm b, Additional fields of view of the dCas13a-NLS-

msfGFP negative-feedback construct delivered with a non-targeting guide. Scale bars, 10μm. 

c, Additional fields of view of the dCas13a-NLS-msfGFP negative-feedback construct 

delivered with ACTB guide 3. Scale bars, 10μm. d, Additional fields of view of the 

dCas13a-NLS-msfGFP negative-feedback construct delivered with ACTB guide 4. Scale 

bars, 10μm.
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Extended Data Fig. 10. dCas13a-NF can image stress granule formation in living cells
a, Representative images from RNA FISH of the ACTB transcript in dCas13a-NF-

expressing cells with corresponding ACTB-targeting and non-targeting guides. Cell outline 

is shown with a dashed line. Scale bars, 10μm b, Overall signal overlap between ACTB 
RNA FISH signal and dCas13a-NF quantified by the Mander's overlap coefficient (left) and 

Pearson's correlation (right). Correlations and signal overlap are calculated pixel-by-pixel on 

a per cell basis. All values are mean ± SEM with n = 3. ****p< 0.0001; ***p< 0.001; **p < 

0.01. A two-tailed student's T-test was used for comparisons. c, Representative images from 

live-cell analysis of stress granule formation in response to 400 uM sodium arsenite 

treatment. Scale bars, 20μm d, Quantitation of stress granule formation in response to 

sodium arsenite treatment. Quantitation is based on overlapping dCas13a-NF and G3BP1 
puncta. All values are mean ± SEM with n = 3. ****p< 0.0001; ***p< 0.001; **p< 0.01; 

*p< 0.05. ns = not significant. A two-tailed student's T-test was used for comparisons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Abudayyeh et al. Page 24

Nature. Author manuscript; available in PMC 2018 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

We thank M. Alimova, D. Feldman,F. Chen, J.G. Doench, J.M. Engreitz, N. Habib, D. Tenen, A. Allen, R. Macrae, 
and R. Belliveau for discussions and support. O.A.A. is supported by a Paul and Daisy Soros Fellowship and 
National Defense Science and Engineering Fellowship. J.S.G. is supported by a D.O.E. Computational Science 
Graduate Fellowship. R.P.B, J.L, and D.T.H. are supported by the NIH through NIAID (R01AI117043). A.D. is 
supported by an NSF Graduate Research Fellowship and a Air Force Office of Scientific Research grant 
(FA9550-14-1-0060). Zika work was partially funded by Marc and Lynne Benioff to P.C.S. and antibiotic resistance 
work was partially funded by Josh and Anita Bekenstein to D.T.H. A.R. is supported by the Howard Hughes 
Medical Institute. F.Z. is a New York Stem Cell Foundation-Robertson Investigator. F.Z. is supported by the NIH 
through NIMH (5DP1-MH100706 and 1R01-MH110049), NSF, Howard Hughes Medical Institute, the New York 
Stem Cell, Simons, Paul G. Allen Family, and Vallee Foundations; and James and Patricia Poitras, Robert Metcalfe, 
and David Cheng. Cas13a/C2c2 expression plasmids are available from Addgene under UBMTA. Support forums 
and computational tools are available via the Zhang lab website (http://www.genome-engineering.org) and Github 
(https://github.com/fengzhanglab)

References

1. Fire A, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis 
elegans. Nature. 1998; 391:806–811. DOI: 10.1038/35888 [PubMed: 9486653] 

2. Elbashir SM, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured 
mammalian cells. Nature. 2001; 411:494–498. DOI: 10.1038/35078107 [PubMed: 11373684] 

3. Root DE, Hacohen N, Hahn WC, Lander ES, Sabatini DM. Genome-scale loss-of-function 
screening with a lentiviral RNAi library. Nat Methods. 2006; 3:715–719. DOI: 10.1038/nmeth924 
[PubMed: 16929317] 

4. Jackson AL, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 
2003; 21:635–637. DOI: 10.1038/nbt831 [PubMed: 12754523] 

5. Tyagi S. Imaging intracellular RNA distribution and dynamics in living cells. Nat Methods. 2009; 
6:331–338. DOI: 10.1038/nmeth.1321 [PubMed: 19404252] 

6. Shmakov S, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 
2017; 15:169–182. DOI: 10.1038/nrmicro.2016.184 [PubMed: 28111461] 

7. Shmakov S, et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas 
Systems. Mol Cell. 2015; 60:385–397. DOI: 10.1016/j.molcel.2015.10.008 [PubMed: 26593719] 

8. Abudayyeh OO, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting 
CRISPR effector. Science. 2016; 353 aaf5573. 

9. Ran FA, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015; 520:186–
191. DOI: 10.1038/nature14299 [PubMed: 25830891] 

10. Gootenberg JS, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017 In press. 

11. Dahlman JE, et al. Orthogonal gene knockout and activation with a catalytically active Cas9 
nuclease. Nat Biotechnol. 2015; 33:1159–1161. DOI: 10.1038/nbt.3390 [PubMed: 26436575] 

12. Garneau NL, Wilusz J, Wilusz CJ. The highways and byways of mRNA decay. Nat Rev Mol Cell 
Biol. 2007; 8:113–126. DOI: 10.1038/nrm2104 [PubMed: 17245413] 

13. Hutchinson JN, et al. A screen for nuclear transcripts identifies two linked noncoding RNAs 
associated with SC35 splicing domains. BMC Genomics. 2007; 8:39. [PubMed: 17270048] 

14. Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting 
genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102:15545–15550. DOI: 
10.1073/pnas.0506580102 [PubMed: 16199517] 

15. Rath S, et al. Human RNase L tunes gene expression by selectively destabilizing the microRNA-
regulated transcriptome. Proc Natl Acad Sci U S A. 2015; 112:15916–15921. DOI: 10.1073/pnas.
1513034112 [PubMed: 26668391] 

16. Gross GG, et al. Recombinant probes for visualizing endogenous synaptic proteins in living 
neurons. Neuron. 2013; 78:971–985. DOI: 10.1016/j.neuron.2013.04.017 [PubMed: 23791193] 

17. Unsworth H, Raguz S, Edwards HJ, Higgins CF, Yague E. mRNA escape from stress granule 
sequestration is dictated by localization to the endoplasmic reticulum. FASEB J. 2010; 24:3370–
3380. DOI: 10.1096/fj.09-151142 [PubMed: 20453113] 

Abudayyeh et al. Page 25

Nature. Author manuscript; available in PMC 2018 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.genome-engineering.org
https://github.com/fengzhanglab


18. Nelles DA, et al. Programmable RNA Tracking in Live Cells with CRISPR/Cas9. Cell. 2016; 
165:488–496. DOI: 10.1016/j.cell.2016.02.054 [PubMed: 26997482] 

19. Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016; 539:180–186. 
DOI: 10.1038/nature20411 [PubMed: 27830812] 

20. Protter DS, Parker R. Principles and Properties of Stress Granules. Trends Cell Biol. 2016; 26:668–
679. DOI: 10.1016/j.tcb.2016.05.004 [PubMed: 27289443] 

21. Tourriere H, et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J 
Cell Biol. 2003; 160:823–831. DOI: 10.1083/jcb.200212128 [PubMed: 12642610] 

22. Tafer H, et al. The impact of target site accessibility on the design of effective siRNAs. Nat 
Biotechnol. 2008; 26:578–583. DOI: 10.1038/nbt1404 [PubMed: 18438400] 

23. Mann DG, et al. Gateway-compatible vectors for high-throughput gene functional analysis in 
switchgrass (Panicum virgatum L.) and other monocot species. Plant Biotechnol J. 2012; 10:226–
236. DOI: 10.1111/j.1467-7652.2011.00658.x [PubMed: 21955653] 

24. Zhang Y, et al. A highly efficient rice green tissue protoplast system for transient gene expression 
and studying light/chloroplast-related processes. Plant Methods. 2011; 7:30. [PubMed: 21961694] 

25. Gootenberg JS, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017

26. Jain M, Nijhawan A, Tyagi AK, Khurana JP. Validation of housekeeping genes as internal control 
for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res 
Commun. 2006; 345:646–651. DOI: 10.1016/j.bbrc.2006.04.140 [PubMed: 16690022] 

27. Joung J, et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat 
Protoc. 2017; 12:828–863. DOI: 10.1038/nprot.2017.016 [PubMed: 28333914] 

28. Bernhart SH, Hofacker IL, Stadler PF. Local RNA base pairing probabilities in large sequences. 
Bioinformatics. 2006; 22:614–615. DOI: 10.1093/bioinformatics/btk014 [PubMed: 16368769] 

29. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a 
reference genome. BMC Bioinformatics. 2011; 12:323. [PubMed: 21816040] 

30. Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 
9:676–682. DOI: 10.1038/nmeth.2019 [PubMed: 22743772] 

Abudayyeh et al. Page 26

Nature. Author manuscript; available in PMC 2018 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Cas13a from Leptotrichia wadei (LwaCas13a) is capable of eukaryotic transcript 
knockdown
a, Schematic of PFS characterization screen on Cas13a orthologs. b, Quantitation of Cas13a 

activity in E. coli measured by colony survival from PFS screen. c, in vivo PFS screening 

shows LwaCas13a has a minimal PFS preference. Error bars indicate an approximate 

Bayesian 95% confidence interval. d, Imaging showing localization and expression of each 

of the mammalian constructs. Scale bars, 10μm. e, Schematic of the mammalian luciferase 

reporter system used to evaluate knockdown. f, Knockdown of Gaussia luciferase (Gluc) 

using engineered variants of LwaCas13a. Sequences for guides and shRNAs are shown 

above. g, Knockdown of three different endogenous transcripts with LwaCas13a compared 

against corresponding RNAi constructs. h, Schematic for LwaCas13a knockdown of 

transcripts in rice (Oryza sativa) protoplasts. i, LwaCas13a knockdown of three transcripts in 

O. sativa protoplasts using three targeting guides per transcript. All values are mean ± SEM 

with n = 3, unless otherwise noted.
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Figure 2. LwaCas13a arrayed screening of mammalian coding and non-coding RNA targets and 
multiplexed guide delivery
a, Schematic of LwaCas13a arrayed screening. b-e, Arrayed knockdown screen of 186 

guides evenly tiled across the Gluc transcript (b) or 93 guides evenly tiled across each of the 

Cluc (c), KRAS (d), and PPIB (e) transcripts. f, Validation of the top three guides from the 

endogenous arrayed knockdown screens with shRNA comparisons. All values are mean ± 

SEM with n = 3. ***p< 0.001; **p < 0.01; two-tailed student's T-test). g, Arrayed 

knockdown screen of 93 guides evenly tiled across the MALAT1 transcript. h, Validation of 

top three guides from the endogenous arrayed MALAT1 knockdown screen with shRNA 

comparisons. i, Multiplexed delivery of five guides in a CRISPR array against five different 

endogenous genes under the expression of a single promoter is capable of robust 

knockdown. j, Multiplexed delivery of three guides against three different endogenous genes 

or with constructs replacing each of the guides with a non-targeting sequence shows specific 

knockdown of the genes targeted. All values are mean ± SEM with n = 3.
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Figure 3. Evaluation of LwaCas13a knockdown specificity and comparisons to RNA interference
a, b Knockdown of Gluc (a) or CXCR4 (b) evaluated with guides containing single 

mismatches at varying positions across the spacer sequence (shown above). c, Knockdown 

of Gluc evaluated with guide 3 containing single or double mismatches at varying positions 

across the spacer sequence (shown above). d, e Expression levels in log2(transcripts per 

million (TPM)) values of all genes detected in RNA-seq libraries of non-targeting control (x-

axis) compared to Gluc-targeting condition (y-axis) for shRNA (d) and LwaCas13a (e). 

Shown is the mean of three biological replicates. The Gluc transcript data point is colored in 

red. The guide sequence used is shown above. f, Differential gene expression analysis of six 

RNA-seq libraries (each with three biological replicates) comparing LwaCas13a knockdown 

to shRNA knockdown at three different genes. g, Quantified mean knockdown levels for the 

targeted genes from the RNA seq libraries. h, Luciferase knockdown (left), cell viability 

(middle), and LwaCas13a-GFP expression (right) for cells transfected with LwaCas13a for 

72 hours with and without selection. All values are mean ± SEM with n = 3.
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Figure 4. Catalytically-inactive LwaCas13a (dCas13a) is capable of binding transcripts and 
tracking stress granule formation
a, Schematic of RNA immunoprecipitation for quantitation of dCas13a binding. b, dCas13a 

targeting Gluc and ACTB transcripts is significantly enriched compared to non-targeting 

controls. c, Schematic of dCas13a-GFP-KRAB construct used for negative-feedback 

imaging. d, Representative images for dCas13a-GFP-KRAB imaging with multiple guides 

targeting ACTB. Scale bars, 10μm. e, Quantitation of translocation of dCas13a-GFP-KRAB. 

f, Representative immunofluorescence images of HEK293FT cells treated with 400 uM 

sodium arsenite. Stress granules are indicated by G3BP1 staining. Scale bars, 5μm. g, 
G3BP1 and dCas13a-GFP-KRAB co-localization quantified per cell by Pearson's 

correlation. All values are mean ± SEM with n = 3. ****p< 0.0001; ***p< 0.001; **p< 

0.01; *p< 0.05. ns = not significant. A one-tailed student's t-test was used for comparisons in 

(b) and a two-tailed student's t-test was used for comparisons in (e) and (g).
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