2,720 research outputs found

    E1 amplitudes, lifetimes, and polarizabilities of the low-lying levels of atomic ytterbium

    Get PDF
    The results of ab initio calculation of E1 amplitudes, lifetimes,and polarizabilities for several low-lying levels of ytterbium are reported. The effective Hamiltonian for the valence electrons has been constructed in the frame of CI+MBPT method and solutions of many electron equation are found.Comment: 11 pages, submitted to Phys.Rev.

    Advances in Unified Strength Theory and its Generalization

    Get PDF
    AbstractIt has been two decades since the first presentation of “A new model and theory on yield and failure of materials under complex stress state” at ICM-6 held at Kyoto, Japan in 1991. The twin-shear element model and a new strength theory were proposed at ICM-6. However, only the two equations were introduced, the characteristics and its applications of this strength theory have not been studied in details. A great deal of researches on this new strength theory and its applications are developed since then by Yu and other scholars at other Universities and Institutes in some countries. Some behaviour of the unified strength theory are described here. The advances in the unified strength theory and its applications are summarized briefly in the framework of continuum mechanics and engineering application

    Optical cavity tests of Lorentz invariance for the electron

    Full text link
    A hypothetical violation of Lorentz invariance in the electrons' equation of motion (expressed within the Lorentz-violating extension of the standard model) leads to a change of the geometry of crystals and thus shifts the resonance frequency of an electromagnetic cavity. This allows experimental tests of Lorentz invariance of the electron sector of the standard model. The material dependence of the effect allows to separate it from an additional shift caused by Lorentz violation in electrodynamics, and to place independent limits on both effects. From present experiments, upper limits on Lorentz violation in the electrons' kinetic energy term are deduced.Comment: 17 pages revte

    Metallography of Al-Si Alloys with Alloying By Fe up to 1%

    Get PDF
    Metallographic analysis of aluminum-silicon alloys with different silicon content from 0 to 12% carried out. All alloys were differed in 2% by silicon amount from each other and all of them were additionally alloyed with iron in an amount of up to 1% in order to improve the technological properties in a die casting process. The paper shows the distribution of structural components of alloys made by electronic microscopy.     Keywords: aluminum-silicon alloys, metallography analysis, eutectic, structure, cast alloy, alloying, electron microscop

    CFT Duals for Extreme Black Holes

    Get PDF
    It is argued that the general four-dimensional extremal Kerr-Newman-AdS-dS black hole is holographically dual to a (chiral half of a) two-dimensional CFT, generalizing an argument given recently for the special case of extremal Kerr. Specifically, the asymptotic symmetries of the near-horizon region of the general extremal black hole are shown to be generated by a Virasoro algebra. Semiclassical formulae are derived for the central charge and temperature of the dual CFT as functions of the cosmological constant, Newton's constant and the black hole charges and spin. We then show, assuming the Cardy formula, that the microscopic entropy of the dual CFT precisely reproduces the macroscopic Bekenstein-Hawking area law. This CFT description becomes singular in the extreme Reissner-Nordstrom limit where the black hole has no spin. At this point a second dual CFT description is proposed in which the global part of the U(1) gauge symmetry is promoted to a Virasoro algebra. This second description is also found to reproduce the area law. Various further generalizations including higher dimensions are discussed.Comment: 18 pages; v2 minor change

    Additive N-Step Markov Chains as Prototype Model of Symbolic Stochastic Dynamical Systems with Long-Range Correlations

    Full text link
    A theory of symbolic dynamic systems with long-range correlations based on the consideration of the binary N-step Markov chains developed earlier in Phys. Rev. Lett. 90, 110601 (2003) is generalized to the biased case (non equal numbers of zeros and unities in the chain). In the model, the conditional probability that the i-th symbol in the chain equals zero (or unity) is a linear function of the number of unities (zeros) among the preceding N symbols. The correlation and distribution functions as well as the variance of number of symbols in the words of arbitrary length L are obtained analytically and verified by numerical simulations. A self-similarity of the studied stochastic process is revealed and the similarity group transformation of the chain parameters is presented. The diffusion Fokker-Planck equation governing the distribution function of the L-words is explored. If the persistent correlations are not extremely strong, the distribution function is shown to be the Gaussian with the variance being nonlinearly dependent on L. An equation connecting the memory and correlation function of the additive Markov chain is presented. This equation allows reconstructing a memory function using a correlation function of the system. Effectiveness and robustness of the proposed method is demonstrated by simple model examples. Memory functions of concrete coarse-grained literary texts are found and their universal power-law behavior at long distances is revealed.Comment: 19 pages, 8 figure

    Dynamic correlations of the Coulomb Luttinger liquid

    Full text link
    The dynamic density response function, form-factor, and spectral function of a Luttinger liquid with Coulomb electron-electron interaction are studied with the emphasis on the short-range electron correlations. The Coulomb interaction changes dramatically the density response function as compared to the case of the short-ranged interaction. The form of the density response function is smoothing with time, and the oscillatory structure appears. However, the spectral functions remain qualitatively the same. The dynamic form-factor contains the δ\delta-peak in the long-wave region, corresponding to one-boson excitations. Besides, the multi-boson-excitations band exists in the wave-number region near to 2kF2k_F. The dynamic form-factor diverges at the edges of this band, while the dielectric function goes to zero there, which indicates the appearance of a soft mode. We develop a method to analyze the asymptotics of the spectral functions near to the edges of the multi-boson-excitations band.Comment: 11 pages, 3 figures, submitted to PR

    A Godel-Friedman cosmology?

    Full text link
    Based on the mathematical similarity between the Friedman open metric and Godel's metric in the case of nearby distances, we investigate a new scenario for the Universe's evolution, where the present Friedman universe originates from a primordial Godel universe by a phase transition during which the cosmological constant vanishes. Using Hubble's constant and the present matter density as input, we show that the radius and density of the primordial Godel universe are close, in order of magnitude, to the present values, and that the time of expansion coincides with the age of the Universe in the standard Friedman model. In addition, the conservation of angular momentum provides, in this context, a possible origin for the rotation of galaxies, leading to a relation between the masses and spins corroborated by observational data.Comment: Extended version, accepted for publication in Physical Review

    Studying Kaon-pion S-wave scattering in K-matrix formalism

    Full text link
    We generalize our previous work on \pi\pi scattering to K\pi scattering, and re-analyze the experiment data of K\pi scattering below 1.6 GeV. Without any free parameter, we explain K\pi I=3/2 S-wave phase shift very well by using t-channel rho and u-channel K^* meson exchange. With the t-channel and u-channel meson exchange fixed as the background term, we fit the K\pi I=1/2 S-wave data of the LASS experiment quite well by introducing one or two s-channel resonances. It is found that there is only one s-channel resonance between K\pi threshold and 1.6 GeV, i.e., K_0^*(1430) with a mass around 1438~1486 MeV and a width about 346 MeV, while the t-channel rho exchange gives a pole at (450-480i) MeV for the amplitude.Comment: REVTeX4 file, 11 pages and 3 figure

    Instanton moduli spaces and bases in coset conformal field theory

    Full text link
    Recently proposed relation between conformal field theories in two dimensions and supersymmetric gauge theories in four dimensions predicts the existence of the distinguished basis in the space of local fields in CFT. This basis has a number of remarkable properties, one of them is the complete factorization of the coefficients of the operator product expansion. We consider a particular case of the U(r) gauge theory on C^2/Z_p which corresponds to a certain coset conformal field theory and describe the properties of this basis. We argue that in the case p=2, r=2 there exist different bases. We give an explicit construction of one of them. For another basis we propose the formula for matrix elements.Comment: 31 pages, 3 figure
    corecore