3,977 research outputs found

    Electrochemical Behavior and Electrochemical Determination of Tiamulin Fumarate at an Ionic Liquid Modified Carbon Paste Electrode

    Get PDF
    The electrochemical behavior of tiamulin fumarate (TF) at ionic liquid N-Butylpyridinium hexafluorophosphate (BPPF6) modified carbon paste electrode (BPPF6/CPE) was investigated and further used for tiamulin fumarate sample determination. BPPF6/CPE showed an enhanced electrochemical response towards the electrochemical oxidation of TF. A well-defined and sensitive oxidation peak was observed at BPPF6/CPE in 0.10 M phosphate buffer solution (PBS, pH = 6.80). The oxidation peak current of TF increased significantly at BPPF6/CPE compared with that at carbon paste electrode and the BPPF6/CPE was characterized by the electrochemical impedance spectroscopy (EIS). At the same time, the electrochemical kinetics parameters of TF on the BPPF6/CPE were evaluated. Under the optimized conditions, the oxidation peak currents were linearly dependent on the concentration of TF in the range of 0.3–9.0 μM and 9.0–0.3 mM, with a detection limit of 0.16 μM (S/N = 3). The proposed method has been successfully applied in the electrochemical quantitative determination of TF content in commercial injection samples

    Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis

    Get PDF
    Sulfur participates in many important mechanisms and pathways of plant development. The most common source of sulfur in soil –SO42−– is absorbed into root tissue and distributed into aerial part through vasculature system, where it is reduced into sulfite and finally sulfide within the subcellular organs such as chloroplasts and mitochondria and used for cysteine and methionine biosynthesis. MicroRNAs are involved in many regulation pathways by repressing the expression of their target genes. MiR395 family in Arabidopsis thaliana has been reported to be an important regulator involved in sulfate transport and assimilation, and a high-affinity sulphate transporter and three ATP sulfurylases (ATPS) were the target genes of AthmiR395 (Arabidopsis thaliana miR395). We have cloned a miR395 gene from rice (Oryza sativa) and studied its function in plant nutritional response. Our results indicated that in rice, transcript level of OsamiR395 (Oryza sativa miR395) increased under sulfate deficiency conditions, and the two predicted target genes of miR395 were down-regulated under the same conditions. Overexpression of OsamiR395h in tobacco impaired its sulfate homeostasis, and sulfate distribution was also slightly impacted among leaves of different ages. One sulfate transporter (SULTR) gene NtaSULTR2 was identified to be the target of miR395 in Nicotiana tobacum, which belongs to low affinity sulfate transporter group. Both miR395 and NtaSULTR2 respond to sulfate starvation in tobacco

    Age as a risk factor for acute mountain sickness upon rapid ascent to 3,700 m among young adult Chinese men.

    Get PDF
    BackgroundThe aim of this study was to explore the relationship between age and acute mountain sickness (AMS) when subjects are exposed suddenly to high altitude.MethodsA total of 856 young adult men were recruited. Before and after acute altitude exposure, the Athens Insomnia Scale score (AISS) was used to evaluate the subjective sleep quality of subjects. AMS was assessed using the Lake Louise scoring system. Heart rate (HR) and arterial oxygen saturation (SaO2) were measured.ResultsResults showed that, at 500 m, AISS and insomnia prevalence were higher in older individuals. After acute exposure to altitude, the HR, AISS, and insomnia prevalence increased sharply, and the increase in older individuals was more marked. The opposite trend was observed for SaO2. At 3,700 m, the prevalence of AMS increased with age, as did severe AMS, and AMS symptoms (except gastrointestinal symptoms). Multivariate logistic regression analysis showed that age was a risk factor for AMS (adjusted odds ratio [OR] 1.07, 95% confidence interval [CI] 1.01-1.13, P<0.05), as well as AISS (adjusted OR 1.39, 95% CI 1.28-1.51, P<0.001).ConclusionThe present study is the first to demonstrate that older age is an independent risk factor for AMS upon rapid ascent to high altitude among young adult Chinese men, and pre-existing poor subjective sleep quality may be a contributor to increased AMS prevalence in older subjects

    Cerebral hemodynamic characteristics of acute mountain sickness upon acute high-altitude exposure at 3,700 m in young Chinese men.

    Get PDF
    PURPOSE: We aimed at identifying the cerebral hemodynamic characteristics of acute mountain sickness (AMS). METHODS: Transcranial Doppler (TCD) sonography examinations were performed between 18 and 24 h after arrival at 3,700 m via plane from 500 m (n = 454). A subgroup of 151 subjects received TCD examinations at both altitudes. RESULTS: The velocities of the middle cerebral artery, vertebral artery (VA) and basilar artery (BA) increased while the pulsatility indexes (PIs) and resistance indexes (RIs) decreased significantly (all p < 0.05). Velocities of BA were higher in AMS (AMS+) individuals when compared with non-AMS (AMS-) subjects (systolic velocity: 66 ± 12 vs. 69 ± 15 cm/s, diastolic velocity: 29 ± 7 vs. 31 ± 8 cm/s and mean velocity, 42 ± 9 vs. 44 ± 10 cm/s). AMS was characterized by higher diastolic velocity [V d_VA (26 ± 4 vs. 25 ± 4, p = 0.013)] with lower PI and RI (both p = 0.004) in VA. Furthermore, the asymmetry index (AI) of VAs was significantly lower in the AMS + group [-5.7 % (21.0 %) vs. -2.5 % (17.8 %), p = 0.016]. The AMS score was closely correlated with the hemodynamic parameters of BA and the V d_VA, PI, RI and AI of VA. CONCLUSION: AMS is associated with alterations in cerebral hemodynamics in the posterior circulation rather than the anterior one, and is characterized by higher blood velocity with lower resistance. In addition, the asymmetry of VAs may be involved in AMS

    Stem cell factor SALL4, a potential prognostic marker for myelodysplastic syndromes

    Get PDF
    Background: Myelodysplastic syndromes (MDS) are a group of heterogeneous diseases with variable clinical course. Predicting disease progression is difficult due to lack of specific molecular marker(s). SALL4 plays important roles in normal hematopoiesis and leukemogenesis. SALL4 transgenic mice develop MDS prior to acute myeloid leukemia (AML) transformation. However, the role of SALL4 in human MDS has not been extensively investigated. In this study, we evaluate the diagnostic/prognostic value of SALL4 in MDS by examining its expression levels in a cohort of MDS patients. Methods: Fifty-five newly diagnosed MDS, twenty MDS-AML, and sixteen post-treatment MDS patients were selected for our study along with ten healthy donors. Results: We demonstrated that SALL4 was over-expressed in MDS patients and proportionally increased in MDS patients with high grade/IPSS scores. This expression pattern was similar to that of Bmi-1, an important marker in predicting MDS/AML progression. In addition, the level of SALL4 was positively correlated with increased blast counts, high-risk keryotypes and increased significantly in MDS-AML transformation. Furthermore, higher level of SALL4 expression was associated with worse survival rates and SALL4 level decreased following effective therapy. Conclusions: To the best of our knowledge, this is the largest series and the first to report the expression pattern of SALL4 in detail in various subtypes of MDS in comparison to that of Bmi-1. We conclude that SALL4 is a potential molecular marker in predicting the prognosis of MDS

    Preparation and properties of a washable flame-retardant coated fabric

    Get PDF
    In this study, a flame-retardant-coating (FRC) agent has been prepared using hydrophobic organic silicone-phosphorus-nitrogen flame retardant and acrylic emulsion. Polyester-cotton blend fabric (P/C) has been treated with FRC agent, and the finishing process, thermal decomposition, flame retardancy, washability, softness and other properties are studied. Results show that the treated fabrics are of good flame retardancy; LOI is up to 32%, thermal degradation rate reduces by 7.8 %/min and thermal damage reduces by 74%. Limiting oxygen index (LOI) is found to be 24.6% and 23.7% for 5 and 10 times washing. The fastness shows excellent washability

    Signature of the coexistence of ferromagnetism and superconductivity at KTaO3_3 heterointerfaces

    Full text link
    The coexistence of superconductivity and ferromagnetism is a long-standing issue in the realm of unconventional superconductivity due to the antagonistic nature of these two ordered states. Experimentally identifying and characterizing novel heterointerface superconductors that coexist with magnetism is challenging. Here, we report the experimental observation of long-range ferromagnetic order at the verge of two-dimensional superconductivity at KTaO3_3 heterointerfaces. Remarkably, we observe in-plane magnetization hysteresis loop persisting up to room temperature with direct current superconducting quantum interference device measurements. Furthermore, first-principles calculations suggest that the observed robust ferromagnetism is attributed to the presence of oxygen vacancies that localize electrons in nearby Ta 5dd states. Our findings not only indicate KTaO3_3 heterointerfaces as unconventional superconductors with time-reversal symmetry breaking, but also inject a new momentum to the study of the delicate interplay between superconductivity and magnetism boosted by strong spin-orbit coupling inherent to the heavy Ta in 5dd orbitals of KTaO3_3 heterointerfaces.Comment: 7 pages, 3 figure

    MIMO Is All You Need : A Strong Multi-In-Multi-Out Baseline for Video Prediction

    Full text link
    The mainstream of the existing approaches for video prediction builds up their models based on a Single-In-Single-Out (SISO) architecture, which takes the current frame as input to predict the next frame in a recursive manner. This way often leads to severe performance degradation when they try to extrapolate a longer period of future, thus limiting the practical use of the prediction model. Alternatively, a Multi-In-Multi-Out (MIMO) architecture that outputs all the future frames at one shot naturally breaks the recursive manner and therefore prevents error accumulation. However, only a few MIMO models for video prediction are proposed and they only achieve inferior performance due to the date. The real strength of the MIMO model in this area is not well noticed and is largely under-explored. Motivated by that, we conduct a comprehensive investigation in this paper to thoroughly exploit how far a simple MIMO architecture can go. Surprisingly, our empirical studies reveal that a simple MIMO model can outperform the state-of-the-art work with a large margin much more than expected, especially in dealing with longterm error accumulation. After exploring a number of ways and designs, we propose a new MIMO architecture based on extending the pure Transformer with local spatio-temporal blocks and a new multi-output decoder, namely MIMO-VP, to establish a new standard in video prediction. We evaluate our model in four highly competitive benchmarks (Moving MNIST, Human3.6M, Weather, KITTI). Extensive experiments show that our model wins 1st place on all the benchmarks with remarkable performance gains and surpasses the best SISO model in all aspects including efficiency, quantity, and quality. We believe our model can serve as a new baseline to facilitate the future research of video prediction tasks. The code will be released
    corecore