1,420 research outputs found

    Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays

    Get PDF
    We study the band and transport features of zigzag graphene nanoribbon with an antidot lattice. It is found that an antidot lattice could turn semi-metal graphene into a semiconductor. The size of the band gap can be tuned by the position of the antidots and the distance D between the two nearest antidots. For a finite superlattice with N antidots and a large D, a group of (N - 1) splitting resonant peaks and transmission-blockade regions appear alternately in the conductance spectrum. This indicates the formation of minibands and minigaps. In addition, Fano resonances can be observed when the antidots are localized near one edge of the nanoribbon. These features provide potential applications for graphene-based electronic and optoelectronic devices. © 2010 IOP Publishing Ltd.postprin

    Hard projectile penetration and trajectory stability

    Get PDF
    We present a general framework to describe the dynamics of a hard projectile penetrating into a solid target. Rigid body dynamics, differential area force law and semi-empirical resistance function are used to formulate the motion of the hard projectile. The proposed model is capable of predicting the projectile trajectory under various oblique and yaw angles. Critical conditions for the occurrences of the instability and the reverse of the projectile trajectory are discussed. It was found that the relative location of mass centre of the projectile has strong influence on the control of the rotation of the projectile, and thus, the projectile stability and the change of trajectory direction. The validity of the proposed model is limited to deep penetration and when the wake separation and reattachment between projectile body and target have negligible influence on the target resistance to the projectile. (C) 2011 Elsevier Ltd. All rights reserved

    Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces

    Get PDF
    This paper studies the four-point bending response and failure mechanisms of sandwich panels with corrugated steel faces and either plain or fibre-reinforced foamed concrete core. Mechanical properties of both plain and polyvinyl alcohol fibre-reinforced foamed concrete were obtained, which are needed for the design of sandwich panel and numerical modelling. It is found that the fibre-reinforcement largely enhances the mechanical behaviour of foamed concrete and composite sandwich panels. Finite element code Abaqus/Standard was employed to investigate the influence of face/core bonding and fastening on the four-point bending response of the sandwich panels. It was found that face/core bonding plays a crucial role in the structural performance while the influence of fastening is negligible. (C) 2011 Elsevier Ltd. All rights reserved

    Analyzing and modeling the construction-drive of China

    Get PDF
    2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Ameliorative Effects of Neurolytic Celiac Plexus Block on Stress and Inflammation in Rats with Partial Hepatectomy

    Get PDF
    Purpose: To investigate effects of neurolytic celiac plexus block (NCPB) on stress and inflammation in rats with partial hepatectomy (PH).Methods: A model of PH rat was established, and serum C-reactive protein (CRP); corticosterone (GC); adrenocorticotropin (ACTH); noradrenaline (NA); adrenalin (AD); aspartate transaminase (AST); alanine transaminase (ALT); as well as tumor necrosis factor-α (TNF-α); interleukin (IL)-1ÎČ and IL-6; high mobility group box1 (HMGB1); and nitric oxide (NO) concentrations in serum assessed after PH. Additionally, Western blotting was performed to determine the effect of NCPB on expressions of glucocorticoid receptors (GR), inhibitor of nuclear factor kappa B (IÎșB), p65, c-Jun and inducible nitric oxide synthase (iNOS) of PH rats, as well as assay effects of NCPB on nuclear translocation of GR, c- Jun and p65. DNA binding activities of nuclear factor kappa B (NF-ÎșB) and activator protein 1 (AP-1) were also determined.Results: NCPB reduced AST and ALT (P < 0.05), decreased secretion of inflammatory cytokines and NO (P < 0.05), as well as decreased CRP, GC, ACTH, NA and AD after PH (p < 0.05). NCPB increased expressions of GR and IÎșB, but expressions of p65, c-Jun, and iNOS (p < 0.05). Additionally, NCPB increased nuclear translocation of GR (p < 0.01), but decreased nuclear translocation of p65 and c-Jun after PH (p < 0.05). Additionally, DNA binding activity of NF-ÎșB and AP-1 was decreased by NCPB (p < 0.05).Conclusion: The results indicate that NCPB treatment can significantly inhibit stress and inflammation in PH rats.Keywords: Neurolytic celiac plexus block, Cytokine, Nuclear translocation, Partial hepatectomy, Stress, Inflammatio

    Elemental distribution within the long-period stacking ordered structure in a Mg-Gd-Zn-Mn alloy

    Get PDF
    High angle annular dark field scanning transmission electron microscope imaging and electron energy loss spectroscopy was used to elucidate the elemental distribution (Gd, Zn, Mn) within the long-period stacking ordered (LPSO) structure in a Mg-15Gd-0.8Zn-0.8Mn (wt%) alloy. While Gd and Zn enrichment was observed within the LPSO structure, no significant enrichment in Mn was observed. After averaging over a large region, a very weak Mn signal was resolved but no significant variations in Mn signal were observed over this region, suggesting that Mn is indeed present. These results provide useful information to support the future development of high performance Mg alloys

    Solute clustering and precipitation in an Al–Cu–Mg–Ag–Si model alloy

    Get PDF
    Solute clustering and precipitation in an Al–Cu–Mg–Ag–Si model alloy has been investigated by atom probe tomography (APT) as well as high-angle annular dark-field (HAADF) imaging and electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM). Nine types of solute clusters (Cu, Ag, Mg–Cu, Mg–Ag, Mg–Cu–Si, Mg–Ag–Si, Mg–Ag–Cu, Cu–Ag–Si and MgAgCuSi) were observed by APT in both the as-quenched alloy and after ageing the alloy at 180 °C for 1 h. Three types of precipitates (Ω (AlCuMgAg), Ξ (Al2Cu) and Mg2Si) were observed by APT and HAADF-STEM after further ageing at 180 °C for 24 h and 100 h. We propose that MgAgCu and MgAgCuSi clusters are likely to be responsible for the formation of the Ω (AlCuMgAg) phase. Furthermore, we also suggest that the Ξ (Al2Cu) phase forms from Cu clusters and the Mg2Si phase forms from the decomposition of MgAgSi and MgAgCuSi clusters by losing Ag to Ω phase growth. Many early binary clusters (Mg–Cu, Mg–Ag) do not seem to undergo a significant further growth during ageing; these are more likely to be transformed into complex ternary and quaternary clusters and be subsequently consumed during the growth of large clusters/precipitates. Furthermore, it is proposed that the plate-like Ω (AlCuMgAg) precipitates evolve continuously from the MgAgCu and MgAgCuSi clusters, rather than via heterogeneous nucleation on their precursors (i.e. MgAgCu and MgAgCuSi clusters). More interestingly, even after ageing at 180 °C for 100 h, the Ω (AlCuMgAg) precipitates remain coherent with the α-Al matrix, indicating that these precipitates have a high thermal stability. This can mainly be attributed to the presence of a single Mg–Ag-rich monolayer observed at the interface between the Ω precipitate and the α-Al matrix, significantly improving the coarsening resistance of the Ω (AlCuMgAg) precipitates. Our results thus reveal links between a variety of solute clusters and the different types of precipitates in the Al–Cu–Mg–Ag–Si model alloy. Such information can in the future be used to control the precipitation by tailoring solute clustering

    Fabrication of silicon-on-reflector for Si-based resonant-cavity-enhanced photodetectors

    Get PDF
    A novel silicon-on-reflector substrate for Si-based resonant-cavity-enhanced photodetectors has been fabricated by using Si-based sol-gel and smart-cut techniques. The Si/SiO2 Bragg reflector is controlled in situ by electron beam evaporation and the thickness can be adjusted to get high reflectivity. The reflectance spectra of the silicon-on-reflector substrate with five pairs of Si/SiO2 reflector have been measured and simulated by transfer matrix model. The reflectivity at operating wavelength is close to 100%. Based on the silicon-on-reflector substrate, SiGe/Si multiple quantum wells resonant-cavity-enhanced photodetectors for 1.3 mu m wavelength have been designed and simulated. Ten-fold enhancement of the quantum efficiency of resonant-cavity-enhanced photodetectors compared with conventional photodetectors is predicted

    Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development

    Get PDF
    published_or_final_versio

    Landslide mapping from aerial photographs using change detection-based Markov random field

    Get PDF
    Landslide mapping (LM) is essential for hazard prevention, mitigation, and vulnerability assessment. Despite the great efforts over the past few years, there is room for improvement in its accuracy and efficiency. Existing LM is primarily achieved using field surveys or visual interpretation of remote sensing images. However, such methods are highly labor-intensive and time-consuming, particularly over large areas. Thus, in this paper a change detection-based Markov random field (CDMRF) method is proposed for near-automatic LM from aerial orthophotos. The proposed CDMRF is applied to a landslide-prone site with an area of approximately 40 km2 on Lantau Island, Hong Kong. Compared with the existing region-based level set evolution (RLSE), it has three main advantages: 1) it employs a more robust threshold method to generate the training samples; 2) it can identify landslides more accurately as it takes advantages of both the spectral and spatial contextual information of landslides; and 3) it needs little parameter tuning. Quantitative evaluation shows that it outperforms RLSE in the whole study area by almost 5.5% in Correctness and by 4% in Quality. To our knowledge, it is the first time CDMRF is used to LM from bitemporal aerial photographs. It is highly generic and has great potential for operational LM applications in large areas and also can be adapted for other sources of imagery data
    • 

    corecore