534 research outputs found

    Cyclosporin A differentially inhibits multiple steps in VEGF induced angiogenesis in human microvascular endothelial cells through altered intracellular signaling

    Get PDF
    The immunosuppressive agent cyclosporin A (CsA), a calcineurin inhibitor which blocks T cell activation has provided the pharmacologic foundation for organ transplantation. CsA exerts additional effects on non-immune cell populations and may adversely effect microvascular endothelial cells, contributing to chronic rejection, a long-term clinical complication and significant cause of mortality in solid-organ transplants, including patients with small bowel allografts. Growth of new blood vessels, or angiogenesis, is a critical homeostatic mechanism in organs and tissues, and regulates vascular populations in response to physiologic requirements. We hypothesized that CsA would inhibit the angiogenic capacity of human gut microvessels. Primary cultures of human intestinal microvascular endothelial cells (HIMEC) were used to evaluate CsA's effect on four in vitro measures of angiogenesis, including endothelial stress fiber assembly, migration, proliferation and tube formation, in response to the endothelial growth factor VEGF. We characterized the effect of CsA on intracellular signaling mechanisms following VEGF stimulation. CsA affected all VEGF induced angiogenic events assessed in HIMEC. CsA differentially inhibited signaling pathways which mediated distinct steps of the angiogenic process. CsA blocked VEGF induced nuclear translocation of the transcription factor NFAT, activation of p44/42 MAPK, and partially inhibited JNK and p38 MAPK. CsA differentially affected signaling cascades in a dose dependent fashion and completely blocked expression of COX-2, which was integrally linked to HIMEC angiogenesis. These data suggest that CsA inhibits the ability of microvascular endothelial cells to undergo angiogenesis, impairing vascular homeostatic mechanisms and contributing to the vasculopathy associated with chronic rejection

    Pilot clinical observations between food and drug seeking derived from fifty cases attending an eating disorder clinic

    Get PDF
    Background The reward deficiency syndrome hypothesis posits that genes are responsible for reward dependence and related behaviors. There is evidence that both bulimia and anorexia nervosa, especially in women, have been linked to a lifetime history of substance use disorder (SUD). There are difficulties in accepting food as an addiction similar to drugs; however, increasingly neuroimaging studies favor such an assertion. Case presentations We are reporting the evidence of comorbidity of eating disorders with SUD found within these case presentations. We show 50 case reports derived from two independent treatment centers in Florida that suggest the commonality between food and drug addictions. In an attempt to provide data from this cohort, many participants did not adequately respond to our questionnaire. Discussion We propose that dopamine agonist therapy may be of common benefit. Failure in the past may reside in too powerful D2 agonist activity leading to D2 receptor downregulation, while the new methodology may cause a reduction of “dopamine resistance” by inducing “dopamine homeostasis.” While this is not a definitive study, it does provide some additional clinical evidence that these two addictions are not mutually exclusive. Conclusion Certainly, it is our position that there is an overlap between food- and drug-seeking behavior. We propose that the studies focused on an effort to produce natural activation of dopaminergic reward circuitry as a type of common therapy may certainly be reasonable. Additional research is warranted

    Adrenal-permissive HSD3B1 genetic inheritance and risk of estrogen-driven postmenopausal breast cancer.

    Get PDF
    BACKGROUNDGenetics of estrogen synthesis and breast cancer risk has been elusive. The 1245A→C missense-encoding polymorphism in HSD3B1, which is common in White populations, is functionally adrenal permissive and increases synthesis of the aromatase substrate androstenedione. We hypothesized that homozygous inheritance of the adrenal-permissive HSD3B1(1245C) is associated with postmenopausal estrogen receptor-positive (ER-positive) breast cancer.METHODSA prospective study of postmenopausal ER-driven breast cancer was done for determination of HSD3B1 and circulating steroids. Validation was performed in 2 other cohorts. Adrenal-permissive genotype frequency was compared between postmenopausal ER-positive breast cancer, the general population, and postmenopausal ER-negative breast cancer.RESULTSProspective and validation studies had 157 and 538 patients, respectively, for the primary analysis of genotype frequency by ER status in White female breast cancer patients who were postmenopausal at diagnosis. The adrenal-permissive genotype frequency in postmenopausal White women with estrogen-driven breast cancer in the prospective cohort was 17.5% (21/120) compared with 5.4% (2/37) for ER-negative breast cancer (P = 0.108) and 9.6% (429/4451) in the general population (P = 0.0077). Adrenal-permissive genotype frequency for estrogen-driven postmenopausal breast cancer was validated using Cambridge and The Cancer Genome Atlas data sets: 14.4% (56/389) compared with 6.0% (9/149) for ER-negative breast cancer (P = 0.007) and the general population (P = 0.005). Circulating androstenedione concentration was higher with the adrenal-permissive genotype (P = 0.03).CONCLUSIONAdrenal-permissive genotype is associated with estrogen-driven postmenopausal breast cancer. These findings link genetic inheritance of endogenous estrogen exposure to estrogen-driven breast cancer.FUNDINGNational Cancer Institute, NIH (R01CA236780, R01CA172382, and P30-CA008748); and Prostate Cancer Foundation Challenge Award

    A combinatorial optimization approach for diverse motif finding applications

    Get PDF
    BACKGROUND: Discovering approximately repeated patterns, or motifs, in biological sequences is an important and widely-studied problem in computational molecular biology. Most frequently, motif finding applications arise when identifying shared regulatory signals within DNA sequences or shared functional and structural elements within protein sequences. Due to the diversity of contexts in which motif finding is applied, several variations of the problem are commonly studied. RESULTS: We introduce a versatile combinatorial optimization framework for motif finding that couples graph pruning techniques with a novel integer linear programming formulation. Our approach is flexible and robust enough to model several variants of the motif finding problem, including those incorporating substitution matrices and phylogenetic distances. Additionally, we give an approach for determining statistical significance of uncovered motifs. In testing on numerous DNA and protein datasets, we demonstrate that our approach typically identifies statistically significant motifs corresponding to either known motifs or other motifs of high conservation. Moreover, in most cases, our approach finds provably optimal solutions to the underlying optimization problem. CONCLUSION: Our results demonstrate that a combined graph theoretic and mathematical programming approach can be the basis for effective and powerful techniques for diverse motif finding applications

    Regulation of cAMP and GSK3 signaling pathways contributes to the neuronal conversion of glioma

    Get PDF
    Glioma is the most malignant type of primary central nervous system tumors, and has an extremely poor prognosis. One potential therapeutic approach is to induce the terminal differentiation of glioma through the forced expression of pro-neural factors. Our goal is to show the proof of concept of the neuronal conversion of C6 glioma through the combined action of small molecules. We investigated the various changes in gene expression, cell-specific marker expression, signaling pathways, physiological characteristics, and morphology in glioma after combination treatment with two small molecules (CHIR99021, a glycogen synthase kinase 3 [GSK3] inhibitor and forskolin, a cyclic adenosine monophosphate [cAMP] activator). Here, we show that the combined action of CHIR99021 and forskolin converted malignant glioma into fully differentiated neurons with no malignant characteristics; inhibited the proliferation of malignant glioma; and significantly down-regulated gene ontology and gene expression profiles related to cell division, gliogenesis, and angiogenesis in small molecule-induced neurons. In vivo, the combined action of CHIR99021 and forskolin markedly delayed neurological deficits and significantly reduced the tumor volume. We suggest that reprogramming technology may be a potential treatment strategy replacing the therapeutic paradigm of traditional treatment of malignant glioma, and a combination molecule comprising a GSK3 inhibitor and a cAMP inducer could be the next generation of anticancer drugs

    Increased mRNA expression levels of ERCC1, OGG1 and RAI in colorectal adenomas and carcinomas

    Get PDF
    BACKGROUND: The majority of colorectal cancer (CRC) cases develop through the adenoma-carcinoma pathway. If an increase in DNA repair expression is detected in both early adenomas and carcinomas it may indicate that low repair capacity in the normal mucosa is a risk factor for adenoma formation. METHODS: We have examined mRNA expression of two DNA repair genes, ERCC1 and OGG1 as well as the putative apoptosis controlling gene RAI, in normal tissues and lesions from 36 cases with adenomas (mild/moderat n = 21 and severe n = 15, dysplasia) and 9 with carcinomas. RESULTS: Comparing expression levels of ERCC1, OGG1 and RAI between normal tissue and all lesions combined yielded higher expression levels in lesions, 3.3-fold higher (P = 0.005), 5.6-fold higher(P < 3·10(-5)) and 7.7-fold higher (P = 0.0005), respectively. The levels of ERCC1, OGG1 and RAI expressions when comparing lesions, did not differ between adenomas and CRC cases, P = 0.836, P = 0.341 and P = 0.909, respectively. When comparing expression levels in normal tissue, the levels for OGG1 and RAI from CRC cases were significantly lower compared to the cases with adenomas, P = 0.012 and P = 0.011, respectively. CONCLUSION: Our results suggest that increased expression of defense genes is an early event in the progression of colorectal adenomas to carcinomas
    corecore