3,273 research outputs found

    Slowly rotating charged black holes in anti-de Sitter third order Lovelock gravity

    Full text link
    In this paper, we study slowly rotating black hole solutions in Lovelock gravity (n=3). These exact slowly rotating black hole solutions are obtained in uncharged and charged cases, respectively. Up to the linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the uncharged black holes get no corrections from rotation. In charged case, we compute magnetic dipole moment and gyromagnetic ratio of the black holes. It is shown that the gyromagnetic ratio keeps invariant after introducing the Gauss-Bonnet and third order Lovelock interactions.Comment: 14 pages, no figur

    On the lowest eigenvalue of Laplace operators with mixed boundary conditions

    Full text link
    In this paper we consider a Robin-type Laplace operator on bounded domains. We study the dependence of its lowest eigenvalue on the boundary conditions and its asymptotic behavior in shrinking and expanding domains. For convex domains we establish two-sided estimates on the lowest eigenvalues in terms of the inradius and of the boundary conditions

    Tanaka Theorem for Inelastic Maxwell Models

    Get PDF
    We show that the Euclidean Wasserstein distance is contractive for inelastic homogeneous Boltzmann kinetic equations in the Maxwellian approximation and its associated Kac-like caricature. This property is as a generalization of the Tanaka theorem to inelastic interactions. Consequences are drawn on the asymptotic behavior of solutions in terms only of the Euclidean Wasserstein distance

    Can the "brick wall" model present the same results in different coordinate representations?

    Full text link
    By using the 't Hooft's "brick wall" model and the Pauli-Villars regularization scheme we calculate the statistical-mechanical entropies arising from the quantum scalar field in different coordinate settings, such as the Painlev\'{e} and Lemaitre coordinates. At first glance, it seems that the entropies would be different from that in the standard Schwarzschild coordinate since the metrics in both the Painlev\'{e} and Lemaitre coordinates do not possess the singularity at the event horizon as that in the Schwarzschild-like coordinate. However, after an exact calculation we find that, up to the subleading correction, the statistical-mechanical entropies in these coordinates are equivalent to that in the Schwarzschild-like coordinate. The result is not only valid for black holes and de Sitter spaces, but also for the case that the quantum field exerts back reaction on the gravitational field provided that the back reaction does not alter the symmetry of the spacetime.Comment: 8 pages, Phys. Rev. D in pres

    Density of states and magnetoconductance of disordered Au point contacts

    Full text link
    We report the first low temperature magnetotransport measurements on electrochemically fabricated atomic scale gold nanojunctions. As T→0T \to 0, the junctions exhibit nonperturbatively large zero bias anomalies (ZBAs) in their differential conductance. We consider several explanations and find that the ZBAs are consistent with a reduced local density of states (LDOS) in the disordered metal. We suggest that this is a result of Coulomb interactions in a granular metal with moderate intergrain coupling. Magnetoconductance of atomic scale junctions also differs significantly from that of less geometrically constrained devices, and supports this explanation.Comment: 5 pages, 5 figures. Accepted to PRB as Brief Repor

    Lights and Shadows of DMSO as Solvent for Tin Halide Perovskites

    Get PDF
    In 2020 dimethyl sulfoxide DMSO , the ever present solvent for tin halide perovskites, was identified as an oxidant for SnII. Nonetheless, alternatives are lacking and few efforts have been devoted to replacing it. To understand this trend it is indispensable to learn the importance of DMSO on the development of tin halide perovskites. Its unique properties have allowed processing compact thin films to be integrated into tin perovskite solar cells. Creative approaches for controlling the perovskite crystallization or increasing its stability to oxidation have been developed relying on DMSO based inks. However, increasingly sophisticated strategies appear to lead the field to a plateau of power conversion efficiency in the range of 10 15 amp; 8201; . And, while DMSO based formulations have performed in encouraging means so far, we should also start considering their potential limitations. In this concept article, we discuss the benefits and limitations of DMSO based tin perovskite processin

    Search for Sub-TeV Gamma Rays Coincident with BATSE Gamma Ray Bursts

    Full text link
    Project GRAND is a 100m x 100m air shower array of proportional wire chambers (PWCs). There are 64 stations each with eight 1.29 m^2 PWC planes arranged in four orthogonal pairs placed vertically above one another to geometrically measure the angles of charged secondaries. A steel plate above the bottom pair of PWCs differentiates muons (which pass undeflected through the steel) from non-penetrating particles. FLUKA Monte Carlo studies show that a TeV gamma ray striking the atmosphere at normal incidence produces 0.23 muons which reach ground level where their angles and identities are measured. Thus, paradoxically, secondary muons are used as a signature for gamma ray primaries. The data are examined for possible angular and time coincidences with eight gamma ray bursts (GRBs) detected by BATSE. Seven of the GRBs were selected because of their good acceptance by GRAND and high BATSE Fluence. The eighth GRB was added due to its possible coincident detection by Milagrito. For each of the eight candidate GRBs, the number of excess counts during the BATSE T90 time interval and within plus or minus five degrees of BATSE's direction was obtained. The highest statistical significance reported in this paper (2.7 sigma) is for the event that was predicted to be the most likely to be observed (GRB 971110).Comment: To be presented at the XXVIII International Cosmic Ray Conference, Tsukuba, Japa

    De Sitter Gravity and Liouville Theory

    Full text link
    We show that the spectrum of conical defects in three-dimensional de Sitter space is in one-to-one correspondence with the spectrum of vertex operators in Liouville conformal field theory. The classical conformal dimensions of vertex operators are equal to the masses of the classical point particles in dS_3 that cause the conical defect. The quantum dimensions instead are shown to coincide with the mass of the Kerr-dS_3 solution computed with the Brown-York stress tensor. Therefore classical de Sitter gravity encodes the quantum properties of Liouville theory. The equality of the gravitational and the Liouville stress tensor provides a further check of this correspondence. The Seiberg bound for vertex operators translates on the bulk side into an upper mass bound for classical point particles. Bulk solutions with cosmological event horizons correspond to microscopic Liouville states, whereas those without horizons correspond to macroscopic (normalizable) states. We also comment on recent criticism by Dyson, Lindesay and Susskind, and point out that the contradictions found by these authors may be resolved if the dual CFT is not able to capture the thermal nature of de Sitter space. Indeed we find that on the CFT side, de Sitter entropy is merely Liouville momentum, and thus has no statistical interpretation in this approach.Comment: 22 pages, LateX2e; added references for section 1 and section 2; corrected typos; improved discussion in section

    Fully differential W' production and decay at next-to-leading order in QCD

    Get PDF
    We present the fully differential production and decay of a W' boson, with arbitrary vector and axial-vector couplings, to any final state at next-to-leading order in QCD. We demonstrate a complete factorization of couplings at next-to-leading order in both the partial width of the W' boson, and in the full two-to-two cross section. We provide numerical predictions for the contribution of a W' boson to single-top-quark production, and separate results based on whether the mass of the right-handed neutrino (nu_R) is light enough for the leptonic decay channel to be open. The single-top-quark analysis will allow for an improved direct W' mass limit of 525-550 GeV using data from run I of the Fermilab Tevatron. We propose a modified tolerance method for estimating parton distribution function uncertainties in cross sections.Comment: 23 pages, revtex3, 13 ps fig

    Conceptual design and performance evaluation of a hybrid concentrating photovoltaic system in preparation for energy

    Get PDF
    Concentrating sunlight and focussing it on smaller sized solar cells increases the device's power output per unit active area. However, this process tends to increase the solar cell temperature considerably and has the potential to compromise system reliability. Adding a heat exchanger system to regulate this temperature rise, can improve the electrical performance whilst simultaneously providing an additional source of low temperature heat. In this study the performance of a low concentrator photovoltaic system with thermal (LCPV/T) extraction was conceptualised and evaluated in depth. An experimental analysis was performed using a first-generation prototype consisting of 5 units of Cross Compound Parabolic Concentrators (CCPC) connected to a heat extraction unit. A bespoke rotating table was used as experimental apparatus to effectively evaluate the optical performance of the system, as a function of its angular positions to replicate the motion of actual sun. Key design performance parameters for the LCPV/T collector are presented and discussed. This work also provides a useful technique to effectively calculate system performance, as a function of the orientation-dependant electrical characterisation parameters data. Finally, a Computational Fluid Dynamics (CFD) model was also applied to investigate the efficacy of the heat exchanger and hence estimate the overall co-generation benefit of using such optimisation techniques on realistic CPV systems. It was highlighted through these simulations that the water flow rate had the potential to be a critical power-generation optimisation criterion for LCPV-T systems. The maximum power output at normal incidence with concentrators and no water flow was found to be 78.4 mW. The system was found to perform with an average electrical efficiency ranging between 10 and 16% when evaluated at five different geographic locations. Experimental analysis of the data obtained showed an increase in power of 141% (power ratio 2.41) compared to the analogous non-concentrating counterpart. For example, in the case of London which receives an annual solar radiation of 1300 kWh/m2 the system is expected to generate 210 kWh/m2. This may reduce further to include losses due to temperature, reflectance/glazing losses, and electrical losses in cabling and inverter by up to 36% leading to an annual power output of 134 kWh/m2 of module
    • …
    corecore