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TANAKA THEOREM FOR INELASTIC MAXWELL MODELS

FRANCOIS BOLLEY AND JOSE A. CARRILLO

ABSTRACT. We show that the Euclidean Wasserstein distance is contractive for inelastic
homogeneous Boltzmann kinetic equations in the Maxwellian approximation and its asso-
ciated Kac-like caricature. This property is as a generalization of the Tanaka theorem to
inelastic interactions. Even in the elastic classical Boltzmann equation, we give a simpler
proof of the Tanaka theorem than the ones in [@, @] Consequences are drawn on the
asymptotic behavior of solutions in terms only of the Fuclidean Wasserstein distance.

1. INTRODUCTION

This work is devoted to contraction and asymptotic properties of the homogeneous
Boltzmann-type equations for inelastic interactions in the Maxwellian approximation in-
troduced in [{] and further analyzed in [[[3, [, [1, B, [0, [T, B, B]. We are basically concerned

with the Boltzmann equation

W BT ) (1)

considered in [[{] and its variants. Here, f(t,v) is the density for the velocity v € R3
distribution of the molecules at time ¢, and Q(f, f) is the inelastic Boltzmann collision
operator defined by

warm= [ [ [ 1o -eedraa 02

for any test function ¢, where

1 l1—e 1+e
v'zé(v—irw)—l— 1 (v—w)+

is the postcollisional velocity, o € S%, v,w € R? and 0 < e < 1 is the constant restitution
coefficient. Equation ([[J]) preserves mass and momentum, but makes the kinetic energy
2

(or temperature)
0(f(t)) = %/RS v— /Rgvf(t,v)dv f(t,v)dv

decrease towards 0. In particular, solutions to ([[.) tend to the Dirac mass at the mean
velocity of the particles [H]. We refer to [, [, B for the discussion about the relation of
this model to the inelastic hard-sphere Boltzmann equation and different ways of writing
the operator. Let us just point out that the factor B /0(f(t)) in front of the operator in
(LT)) is chosen for having the same temperature decay law as its hard-sphere counterpart
[A] known as the Haff’s law.

v —wl|o
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The convergence towards the monokinetic distribution has been made more precise in
[, B, @] by means of homogeneous cooling states. They are self-similar solutions of the ho-
mogeneous Boltzmann equation ([.T) describing the long-time asymptotics and presenting
power-like tail behavior whose relevance was previously discussed in the physics literature
I, 7.

To avoid the collapse of the solution to the Dirac mass, the authors in suggested the
introduction of a stochastic thermostat which, at the kinetic level, is modelled by a linear
diffusion term in velocity. In this framework, the density f in the velocity space obeys

% = B\O(f(t) Q(f, f) + AO°(f(t) Ao f with 0<p< g (1.3)

Existence and uniqueness for given mean velocity of a steady state to ([.3) have been shown
in [I5, @, ]. The convergence of solutions towards this steady state in all Sobolev norms
has also been investigated and quantified by means of Fourier-based distances between
probability measures [].

Fourier techniques are a good toolbox and have been extremely fruitful for studying
Maxwellian models in kinetic theory since Bobylev observed [B, ] that such equations
have closed forms in Fourier variables. Fourier distances are not only suitable technical
tools to study the long-time asymptotics of models ([.1]) and ([[.3), but also they represent
the first Liapunov functionals known for inelastic Boltzmann-type equations [, B]. In
the case of the classical elastic Boltzmann equation for Maxwellian molecules, there is
another known Liapunov functional, namely, the Tanaka functional [PF], apart from the
H-functional for which no counterpart is known in inelastic models.

The Tanaka functional is the Euclidean (or quadratic) Wasserstein distance between
measures in the modern jargon of optimal mass transport theory. It is defined on the set
P,(R3) of Borel probability measures on R? with finite second moment or kinetic energy
as

1/2
Wg(f,g):inf{// |v—w|2d7r(v,w)} = inf {E [|V—W|2]}1/2
™ R3xR3 (V,W)

where 7 runs over the set of joint probability measures on R? x R? with marginals f
and g and (V, W) are all possible couples of random variables with f and g as respective
laws. This functional was proven by Tanaka [RJ] to be non-increasing for the flow of the
homogeneous Boltzmann equation in the Maxwellian case. In fact, the Tanaka functional
and Fourier-based distances are related to each other [I§, [, d], and were used to study the
trend to equilibrium for Maxwellian gases. On the other hand, related simplified granular
models [[4] have been shown to be strict contractions for the Wasserstein distance Wj.

With this situation, a natural question arose as an open problem in [, Remark 3.3]
and [P§, Section 2.8]: is the Euclidean Wasserstein distance a contraction for the flow of
inelastic Maxwell models? The main results of this work answer this question affirmatively.
Moreover, we shall not need to introduce Bobylev’s Fourier representation of the inelastic
Maxwell models working only in the physical space.

We shall show in the next section the key idea behind the proof of all results concerning
contractions in Ws distance for inelastic Maxwell models, namely, the gain part Q™ (f, f)
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of the collision operator verifies

3+ e2
4

for any f, g in P»(R?) with equal mean velocity and any restitution coefficient 0 < e < 1.
Based on this property, we shall derive contraction and asymptotic properties both for
(1) and ([23) in Subsections B.]] and B-3. On one hand, we shall prove that the flow for
the diffusive equation ([3) is a strict contraction for W5, while for the scaled equation
associated to ([L.I]) we shall show that solutions converge in W, to a corresponding ho-
mogeneous cooling state, without rate but only assuming that initial data have bounded
second moment. This improves the Ernst-Brito conjecture [[L6, [, [, B, P since it shows
that the basin of attraction of the homogenous cooling state is larger -we avoid the typical
assumption of bounded moments of order 2 + §- if we do not ask for a rate.

Moreover, a generalization for non constant cross sections including Tanaka’s theorem
as a particular case will be proven in Section []. Finally, we shall also show this generic
property for the inelastic Kac model introduced in [R3] as a dissipative version of Kac’s
caricature of Maxwellian gases [[9, (.

WQ(Q+(fa f)7Q+(gag)) S

WQ(fa g)

2. CONTRACTION IN W5 OF THE GAIN OPERATOR

We start by summarizing the main properties of the Euclidean Wasserstein distance W5
that we shall make use of in the rest, refering to [[1], 7 for the proofs.

Proposition 1. The space (P2(R3), Ws) is a complete metric space. Moreover, the fol-
lowing properties of the distance Wy hold:

i) Convergence of measures: Given {f,},>1 and f in Py(R?), the following three
assertions are equivalent:
a) Wa(fn, f) tends to 0 as n goes to infinity.
b) f. tends to f weakly-* as measures as n goes to infinity and

sup/ [v]? fu(v)dv — 0 as R — +oo.
[v|>R

n>1

c) fn tends to f weakly-* as measures and
|U|2fn(v) dv — / |v|2f(v) dv as n — +oo.
R3 R3

iii) Relation to Temperature: If f belongs to Po(R3) and 6, is the Dirac mass at a
in R3, then

W3 (f,0a) = [ |v—al*df(v).
R3
iii) Scaling: Given f in Po(R?) and 0 > 0, let us define
Solf] = 6°/2 f(6'%v)
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for absolutely continuous measures with respect to Lebesque measure or its corres-
ponding definition by duality for general measures; then for any f and g in Py(R3),
we have

Wa(So[f1, Solg]) = 672 Wa(f, g).
iv) Convexity: Given f1, f2, g1 and go in P2(R?) and « in [0, 1], then

W5 (afi + (1 = a) fa,agr + (1 — @)go) < aW5(f1, 91) + (1 — ) W5 (f2, go).
As a simple consequence, given f,g and h in Py(R?), then
Wa(h f.h* g) < Wa(f, g)

where * stands for the convolution in R3.

Here the convolution of the two measures h and f is defined by duality by

when) = [[  platndna i)

for any test function ¢ on R®. If f is a Borel probability measure on R* we shall let

<f>= /Rgvdf(v) = /Rgvf(v) dv

denote its mean velocity. We shall use the same notation for densities and measures
expecting that the reader will not get confused.

Let us write the collision operator @) given in ([.3) as

QUL N =Q"(f.f)—f (2.1)
where QT (f, f) is defined by
0@ =5 [ [ ] 105w et dododu (2.
T JR3 JR3 J §2
for any test function ¢, where we recall that
1 1—e 1+e

(v —w)+

v/za(v+w)+ lv — wlo.

In this section we derive a contraction property in W5 distance of the gain operator
Q™. For that purpose, let us note that the previous definition of the gain operator can be
regarded as follows: given a probability measure f on R?, the probability measure Q™ (f, f)
is defined by

(0@ ) = [ [ 10 ) (M) ddu

where 11, ,, is the uniform probability distribution on the sphere S, ,, with center

1(+ )+1—e
Cow = —(V+w
’ 2 4

(v —w)

and radius

o 1 lv — w].
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FIGURE 1. Geometry of inelastic collisions

In probabilistic terms, the gain operator is defined as an expectation:

Q+(f7 f) =K [HV,W]

where V' and W are independent random variables with law f.
Then the convexity of W3 in Proposition [I] implies

WZQ(QJr(fu f)7 QJr(gv g)) = WZQ(E [HV,W] 7E [HX,YD
<E [W;(yw,Oxy)] (2.3)

where X and Y are independent random variables with law ¢g. This observation leads us to
consider the W, distance between uniform distributions on spheres. To this aim, we have
the following general lemma:

Lemma 2. The squared Wasserstein distance W3 between the uniform distributions on
the sphere with center O and radius r and the sphere with center O' and radius v’ in R? is
bounded by |O' — O)? + (' —r)2.

Proof.- We define a map T : R® — R? transporting the sphere of center O and radius
r > 0 onto the sphere with center O" and radius 7’ > r in the following way:

o If r = ¢/, then we just let T" be the translation map with vector O" — O, i.e.,
Tw)=v+0" —=0.
e If O = O, then we just let T be the dilation with factor ”7/ centered at O, i.e.,

T(v) = 7"7/1).
e If r # 1/, then we consider the only point 2 € R? verifying that
1 1
-(0-Q)=—=(0"-Q
Lo-o)=Lo-a
that is,
Q=0+——(0'-0).

rl—r
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Then we let T" be the dilation with factor %/ centered at ), that is, we let T'(v) =

Q+ %/(v — Q). Such a construction of the point 2 and the map T is sketched in
Figure P] in the case of non interior spheres.

FIGURE 2. Sketch of the computation of the Euclidean cost of transporting
spheres to spheres. Transport lines are just rays from the point €.

Let Up, and Upr ,» denote the uniform distributions on the corresponding spheres. Then
the transport plan 7 given by

JIatwwyntow) = [ a.70) ddo, )

for all test functions n(v,w) has Uy, and Up,» as marginals by construction of 7. Using
this transference plan in the definition of the Euclidean Wasserstein distance, we finally
conclude

r—r

2
W3 (Uo., Uor 1) < lv — T(v)|* dUo ,(v) = ( ) lv — Q* dUo . (v)
R3 R3
that can be computed explicitly, giving
W3 Uo,Uor ) < |0 — O + (r' —1)?
and finishing the proof. 0O

This lemma, using the notation a = v — x and b = w — y, for fixed values v, w, x,y in
R3, implies that

WQZ(HU,wa Hx,y) S |CU,w - Cm,y|2 + |Tv,w - Tm,y|2

3—e 1+e |2 1+e\2
< b ( ) —b?
< ’ T + 1 + 1 la — b
5—2e+e* , (14e€? , 1—¢
S T e —"
here a - b denotes the scalar product between a and b in R? and the bound in

1+e\2 2
Pow = Taal® = (=) [0 —w| = |z = gl

< () Nw—w) @) = () a7
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follows from the Cauchy-Schwarz inequality

(v—w)-(z—y) < |v—w|lz—yl| (2.4)
Therefore, by (£.3),
WHQ(.£).Q"(0.9) < 2w v - xp + D mpw vy
+1;§Emﬁaﬂ(W—Yﬂ

Let moreover (V, X) and (W,Y") be two independent optimal couples in the sense that
Wi (f,9) =E[V-X["] =E[W-Y["].
Then
2
E[(V-X)-(W-Y)=E[(V-X)]-E[(W-Y)]=|<f>-<g>

by independence. Collecting all terms leads to the following key estimate and contraction
property:
Proposition 3. If f and g belong to P2(R3), then

WHQ (1 1).Q"(9.9) < Wi L)+ 1

for any restitution coefficient 0 < e < 1. As a consequence, given f and g in Po(R3) with
equal mean velocity, then

\<f>—<g>\2

3+ e2
4

WQ(Q+(faf)7Q+(gag)) < WQ(fag)

The case of equality is addressed in the following statement:

Proposition 4. Let f and g belong to Py(R3) with equal mean velocity and temperature,
where g is absolutely continuous with respect to Lebesque measure with positive density. If
3+ e?

WQ(QJr(f)f)vQJr(gag)): 4

for some restitution coefficient 0 < e <1, then f =g.

WQ(fag)

Proof.- 1t is necessary that the equality holds at each step of the arguments in Proposi-
tion fJ. In particular, (B-4) holds as an equality, that is,

V-w X-Y

V—-wW| |X-Y]
almost surely in the above notation. Then, since ¢ is absolutely continuous with respect
to Lebesgue measure with positive density, one can proceed as in [R5, Lemma 9.1] to show

that f = g. We sketch the proof for the sake of the reader. Since g is absolutely continuous
with respect to Lebesgue measure, there exists [B7] a Borel map u : R* — R? such that
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f be the image measure of g by u, and in probabilistic terms V' = «(X) and W = u(Y')
almost surely. Hence

u(e)—uly) _ w—y

u(z) —uly)] |z -y
almost everywhere for Lebesgue measure since X and Y are independent and since their
law ¢ has positive density. We leave the reader to check [R7, Exercise 7.25] that this implies
the existence of constants w; and wy such that u(z) = wy + wex. First of all w3 = 1 since
f and g have same temperature. Then identity (B.5) forces ws = 1, implying w; = 0 since
<f>=<g>,and finally f =¢g. O

(2.5)

3. CONTRACTIVE ESTIMATES FOR THE INELASTIC MAXWELL MODEL

In this section, we shall derive contractive estimates in the Euclidean Wasserstein dis-
tance for solutions to the inelastic Maxwell models both in the non-diffusive and the dif-
fusive cases.

3.1. The non-diffusive case. We are first concerned with solutions f(t¢) to the Boltzmann
equation (L)) with 0 < e < 1. After time scaling defined by

B [t
T:E/O VO(f(w)) dw

. 8 . m . . R .
with £/ = Tz 8sin B, we get a function denoted again f(7) for simplicity, solution to
—e

L)) (3.1)

Theorem 5. If fi and fo are two solutions to (B.1]) with respective initial data [, and f3
in Py(R3), then

WE(fi(r), fo(7)) < e WESL ) + (1= e ) [< f> = < fi> (3.2)
for all 7 > 0.

Proof.- Decomposition (R.1) of the collision operator @ as

QULN=Q"(f.f)—f

allows us to represent the solutions to (B.I)) by Duhamel’s formula as

filr) =e BT 2 + E/ P QT (fils), fi(s))ds,  i=1,2.
0
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Then the convexity of the squared Wasserstein distance in Proposition [I] and Proposition
B imply

W22(f1(7) f2( ))
< ETWR(SO, £9) + B / CIWE(QT (fuls). F1(9)), Q" (fols), fo(s)) dis

< e P W2, 9) + B / (=) (3“ W§<f1<s>,f2<s>>+x) s

0

here
X = §)> — <fo(s)> \2

does not depend on time since the mean velocity is preserved by equation (B.]). In other
words, the function y(7) = 7 W2 (f1(7), f2(7)) satisfies the inequality

y(7) < y(0) + E/O (3 262 y(s) + XeE3> ds

and then
X
(eE’T _ eyEfr)
1=y
by Gronwall’s lemma with v = (3+¢?)/4. This concludes the argument since (1—~) E = 2.
0

y(r) < y(0)e™™ +

Remark 6.

(1) Without further assumptions on the initial data f2 and f2, this result is optimal in
the following sense. If f? is chosen as the Dirac mass at the mean velocity of f?,
then inequality (B.3) is actually an equality for all 7; indeed

W2(fu(r), f /|v—<f1 > [ fi(r0) dv = 30(f(7))
—3672T9(f1)— 72TW2(f17f2)

do
since = 260 by equation (B.1]).
T
(2) In terms of the original time variable ¢ in ([0]), if f and f? are two initial data
with the same initial temperature 6y, then the temperatures of the corresponding

solutions f! and f? to ([[1]) follow the law
o 1—¢
dt 4
and hence are both equal to

1—e? 2
0(t) = («901/2 + TJ}%) .

Bo?2 (3.3)



10 FRANCOIS BOLLEY AND JOSE A. CARRILLO

Then estimate (B.2) reads as

WA, 2(0) < S WD, ) + (1 - ?) <> fi> [

for all t > 0.

The convergence of the solutions to ([.) towards the Dirac measure at their mean velocity
has been made precise in [, P| by the introduction of self-similar variables and homogeneous
cooling states. There the authors prove that the rescaled solutions g defined by

g(rv) = OP(F(1)) f(r.072(f (1) v) (3.4)

satisfy the strict contraction property

o+ (91(7), 92(7)) < e Oy (g), 69), C(e) >0

for initial data g9 and g9 in Py(R3) with equal mean velocity and pressure tensor, where
e > 0 and dy. is a Fourier-based distance between probability measures. Moreover, for
e = 0 one has C(g) = 0 giving a non-strict contraction in ds distance. In fact, by the
scaling property in Proposition [ll, (B.3) reads as

Wag1(7), 92(7)) < Walgy, g3) (3.5)

in the scaled variables. This is consistent with the fact that the distances d, and W5 are
“of the same order” [I§, @, PJ] up to moment bounds.
A measure g(7,v) defined by (B-4)) from a solution f(v,7) to (B-1]) with initial zero mean
velocity has zero mean velocity and unit kinetic energy for all 7, and is solution to
99

5, TV (gv) = EQ(g,9). (3.6)

Moreover it is proven in [f, ] that (B.) has a unique stationary solution g., with zero
mean velocity and unit kinetic energy; all measure solutions g(7,v) to (B:§) with zero
mean velocity, unit kinetic energy and bounded moment of order 2 + ¢ converge to this
stationary state g., as 7 goes to infinity in the dy sense, that is, in the W5 sense since ds
and W, metrize the same topology on probability measures [2§] up to moment conditions.
Moreover the convergence has exponential rate in the ds sense, and in the W, sense if the
initial datum has finite fourth order moment. In turn this ensures existence and uniqueness
of homogeneous cooling states to ([.1) for given mean velocity and kinetic energy, and
algebraic convergence of the solutions f(¢) towards them in the original variables.

We conclude this section by proving this convergence result using only the W5 distance,
and without assuming that the initial data has more than two finite moments. This in turn
shows that the Euclidean Wasserstein distance W5 between solutions of (B.G) converges to
zero as t goes to infinity, improving over (B.J) that does not a priori yield any information
on the long-time behavior of the solutions g. As a drawback, this argument does not
provide any rate of convergence as does the Fourier-based argument in [f].



TANAKA THEOREM FOR INELASTIC MAXWELL MODELS 11

Theorem 7. Let g9 and g9 be two Borel probability measures on R® with zero mean velocity
and unit kinetic enerqy, and let g1(7) and ga2(T) be the solutions to (B.€) with respective
initial data g9 and ¢9. Then the map T — Wo(g1(7), g2(7)) is non-increasing and tends to
0 as T goes to infinity.

Proof.- Tt is based on the argument in [R7] to Tanaka’s theorem. The first statement is
a simple consequence of (B.H). Then we turn to the second part of the theorem which by
triangular inequality for the W, distance is enough to prove when g9, and hence go(7), is
the unique stationary state g, to (B.g) with zero mean velocity and unit kinetic energy.

Step 1.- Let us first assume that the fourth moment of the initial datum is bounded,
ie.,

/ lv[* ¢d(v) dv < .
R3

Then Proposition [J in the appendix ensures that

sup [ |v|* g1(7,v) dv < oo,
>0 JR3

so that

sup [ o (rie) do
720 J|v|>R

tends to 0 as R goes to infinity. Prohorov’s compactness theorem and Proposition | imply
the existence of a sequence 7, — 00 as k — oo and a probability measure " on R? with
zero mean velocity and unit kinetic energy such that Wy (g1 (7%), u°) — 0 as k — oco. We

want to prove that u° = g..

Without loss of generality, we can assume that the diverging time sequence satisfies
T +1 < 7141 for all k. Now, since g, is a stationary solution, it follows from the first part
of the theorem that

Wa(g1(Th11)s goo) < Walg1(7h + 1), goo) < Wal(91(7k), goo)- (3.7)

On one hand, both Wy(g1(7%), goo) and Wa(g1(Thi1), goo) tend to Wa(u®, goo) as k goes to
infinity by triangular inequality. Then, if u(7) denotes the solution to (B.§) with initial
datum p°, the first point again ensures that

Wa(gu (7 + 1), (1)) < Wa(ga (i), 1)

which tends to 0. Hence Wa(g1 (7% + 1), go) tends to Wa(uu(1), goo) by triangular inequality,
and finally

Wa(1(1), goo) = Wa(pt’, goo)

by passing to the limit in & in (B.7). By the non-increasing character of W, along the flow,
we deduce that

Waii(1), goo) = Walia(7), goo) = Wa(’, goo)
for all 7 € [0, 1].
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Consequently p(7) and ¢, are two solutions to (B.§) with zero mean velocity and unit
temperature, whose W, distance is constant on the time interval [0,1]. This is possible
only if equality holds at each step in the proof of Theorem [J in the original space variables;
in particular

3+ e2

Wa(QF (1u(7), 1(7)), Q" (goor o)) = T Wa(u(7), goc)

for all 7, and especially for 7 = 0. But u° and g., have same mean velocity and temperature,
and, according to [, Theorem 5.3], g is absolutely continuous with respect to Lebesgue
measure, with positive density. Hence Proposition | ensures that p° = g...

In particular Wa(g1(7%), goo) — 0 as k — oo, and then W5(¢1(7), go0) — 0 as 7 — o0
since it is a non increasing function.

Step 2.- Let us now remove the hypothesis on the boundedness of the initial fourth
order moment. Let (¢°"), be a sequence in Py(R3) with zero mean velocity, unit kinetic
energy, finite fourth order moment and converging to ¢{ in the weak sense of probability
measures; in particular it converges to ¢Y in the W, distance sense by Proposition [[. Such
a g can be obtained by successive truncation of ¢¥ to a ball of radius n in R?, translation
to keep the mean property, and dilation centered at 0 to keep the kinetic energy equal to
1.

Then, if g"(7) is the solution to (B.6) with initial datum ¢°", the triangular inequality
for Wy and (B.5) ensure that

Wa(91(7), goo) < Walga(7), 9" (7)) + Walg™(7), 9oo)
< Walg?, g™") + Walg™(7), goo)-

Given € > 0, the first term in the right hand side is bounded by e for some n large enough,
and for this now fixed n, the second term is bounded by e for all 7 larger than some
constant by the first step. This ensures that W5(g1(7), g ) tends to 0 as 7 goes to infinity.
U

3.2. The diffusive case. We now turn to the diffusive version ([.3) of ([.1). Again by

the change of time
B t
T = E/ VO(f(w))dw
0

with £ = 5 we are brought to studying the equation
—e
O~ BQU.) + € (f() A 38
3 = ; 7)) Auf (3.8)
where
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As in the nonviscous case of (B.1]) we shall prove

Theorem 8. If f; and fo are two solutions to (B-§) for the respective initial data fY and
1Y in Pao(R3) with same kinetic energy, then

WR(fi(7), H(7) < T WR(L ) + (1= ) [ < fi> = < f>] (3.9)
for all 7> 0.

Proof.- We again start by giving a Duhamel’s representation of the solutions. To this
aim we write (B.§) as
0
U —BF - Bf+6f()Af
where F'= Q% (f, f), that is,
of E + |k*e? f=EF
L (Bt K@) f=BF.

Here, we are using the convention

i) = [ e )

for the Fourier transform of the measure p on R3. Hence the solutions satisfy

Flr, k) = e BT fO(k) e SUD I | g / " o E(rs) B(s, k) e CUDSENKE g
0

where X(f,7) = /T ©?%(f(s))ds, and thus
0

T

frv) =e 7 (fO % Toxsn)(v) + E /0 e P (F(s) % Tos(gm)—s(r.e) (v) ds

= e BT f(r,0) + E/ e B P15, 0) ds.
0

Here 1
To(v) = ——— e [oF/2e
(V) (2ma)3/?
is the centered Maxwellian with temperature «/3 > 0. Moreover f; and fy have same
temperature at all times, so that 3(f,7) = 3(f2, 7). Then the convexity of the squared
Wasserstein distance and its non-increasing character by convolution with a given measure,

see Proposition [ll, imply that

sz(fl(T%fz(T))SeETWf(ﬁ(T),fz(T))ﬂLE/eE(TS)WQQ(Fl(Ta s), Fy(, 5))ds
0
< EWHGL ) E [ e BT WHE(S), Fas) ds.
0
In other words the squared distance W3 (f1(7), f2(7)) satisfies the same bound as in the

nonviscous case of Theorem [, and we can conclude analogously. 0O
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Remark 9.

(1) As pointed out to us by C. Villani the result can also be obtained by a splitting
argument between the collision term and the diffusion term.
(2) As proven in [, the temperature 6(f(t)) of the solution f in the original time

variable t converges towards
2
900 _ ( 8 A ) 3—2p
B(1 —e€?)
as t goes to infinity, and satisfies 0(f(¢)) > min(0(f(0)),0). In particular

B [t o
=3 | VA= G

if 01 = B min(0(£(0)), 00)/2. Writing (B9) in the original variable ¢ for initial data
with equal mean velocity and temperature, we recover the contraction property

Wa(fi(t), f2(8) < Wa(f7, f5) e -1,

that coincides with (3.1) in [[] for the Fourier-based dy distance exactly with the
same rate. For p = 1 one can exactly compute 7 and also recover (3.2) in [f] but
for the distance Ws.

(3) The existence of unique diffusive equilibria for each given value of the initial mean
velocity can be obtained from this contraction property of the W5 distance analo-
gously to the arguments done in [l with the Fourier-based distance d.

4. GENERAL CROSS SECTION

In this section, we consider the more general case of a variable collision cross section
when the gain term Q7 is defined by

@ ) =3 [ [ ] ) ) o) (= o) doav e

where again the post—colhslonal velocity v’ is given by

1 l1—e 1+e
vlzé(v+w)+ (v—w) +

v —w|o

and the cross section b satisfies the normalized cut-off assumption

2 i
/52 b(k:-cr)da:/o /0 b(cos @) sin@df dp = 1 (4.1)

for any k£ in S?. Then we shall prove the following extension of Proposition [ for non
constant cross sections b:

Theorem 10. If f and g in Po(R?) have equal mean velocity, then

W2QT(f, f),Q (g,9) < (3 262+1 _26271'/07})((3089) cos 6 sin@d@) W2(f,g).
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Before going onto the proof, we draw the main consequence. Let f; = fi(r,v) and
fo = fa(7,v) be two solutions to the Boltzmann equation
L Q=0 - f
-
with respective initial data f{ and fJ in Py(R?), where Q% is defined as above. Then, as
in Section B.1], Duhamel’s representation formula

fry=e 0y / e QH(f(s), £(5)) ds

0
of the solutions and the convexity of W2 ensure the contraction property

Wa(fi(7), fa(7)) < e T2V (f7) 1) (4.2)
for all 7, where
3+er 1-—¢?
M= + 5
is bounded by 1 by ([.1)).

In the elastic case when e = 1, 7, = 1, one recovers Tanaka’s non-strict contraction
result [ for the solutions to the homogeneous elastic Boltzmann equation for Maxwellian
molecules, at least under the cut-off assumption, but with a somehow simpler argument
than those given in [2§] and [B7).

7T/ b(cos ) cos 8 sin O do
0

Proof.- By definition
(0, Q*(f, f) = QW/OW/RB /R3 { /027T (V") %}f(v)f(w) dv dw b(cos @) sin 6 db

= 27r/ E [(¢,Uy,wy)] b(cos ) sin g df
0

where V and W are independent random variables distributed according to f and, given
v, w in R3, Uy w0 1s the uniform probability measure on the circle C, ,, 9 with center

1 1— 1
Cv,w,€:§<v+w)+< 46+ 16C0S9)<U—’w),
radius
1+e .
Towf = |v — w]| sin @

and axis
b v—w
v —wl

Let also g be a Borel probability measure on R* and X,Y be independent random
variables with law g. Then, by the normalization assumption (f.), the convexity of the
squared Wasserstein distance with respect to both arguments ensures that

W3 (Q*(f. f).Q%(g.9)) <27 /0 'E (W3 Uy, Ux v,0)] b(cos 0) sin 6 do. (4.3)
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FIiGURE 3.

We now let v, w,z,y and 6 be fixed in R® and [0, 7] respectively, and give an upper
bound to W22 (Upw0,Usy0). This consists in estimating the transport cost of a circle in R?
onto another one, for which we have the following general bound:

Lemma 11. [P7] The squared Wasserstein distance between the uniform distributions on
the circles with centers ¢ and ¢, radii v and v' and azes k and k' is bounded by

lc =P +r2 4+ —rr' (14 |k - K)).

Hence, using the notations a =v — 2, b=w —y, a =v —w and b = x — y in our case we
get

_ 1 1 2
W;(L[ww,g,l/{x,yﬂ) < ‘(3 : ¢ + Ze COS@)@ + %(1 — cosf) b)
1 2 . - i b
+(‘+ﬂ sin? 0 Jaf? + o> — allpl (1 + (= - = )]
4 [
3—e 1+e 2 1+e\2 ., 9
< —__ -
< [( 1 + 1 cos@) +< 1 ) sin 9]|a\
1 2 _
+2< +€) [(3 e+C089>(1—cosQ)—ZsinZH]a-b
4 1+e
1 2
—l—( Ze> [(1 — cosB)* + sin” 4] |b]? (4.4)
where we have used the bound
la®> + o> — lallp) —a-b < |a*> + o> — 2a-b = |a — 0> = |a — b

Assume now that (V, X) and (W,Y) are two independent couples of random variables,
optimal in the sense that

W3(f,9) =E[|[V-XP] =E[W -Y["].

Note that
E[(V = X)- (W =Y)] = E[(V - X)] -E[W = ¥)] =0



TANAKA THEOREM FOR INELASTIC MAXWELL MODELS 17

since (V, X) and (W,Y) are independent and since f and g have same mean velocity. Then

from (f4):
E [W3(Uvwe,Uxve)] < 7(0) W5(f,9)

where

v(0) = (3;6 + 116005«9>2+ (126)2[(1 — cos6)” + 2sin® 4]
3+e?  1—¢?

= 1 + 1 cos 8.

One concludes the argument after averaging over 6 as in ({.3) and taking (1) into account.
0

5. INELASTIC KAC MODEL

In this last section we consider a simple one-dimensional model introduced in [P3 which
can be seen as a dissipative version of the Kac caricature of a Maxwellian gas [[9, BO].
Let us remark that the definition and properties of the Euclidean Wasserstein distance W5
discussed above generalizes equally well to any dimension. Tanaka himself [24] showed that
the Euclidean Wasserstein distance is a non strict contraction for the elastic classical Kac
model. In the inelastic Kac model, the evolution of the density function f is governed by
the equation

af

— =Q(f. ) (5.1)
in which the collision term Q(f, f) is deﬁned by

(. Q. 1)) t///‘f w)[(v) — o(v)] 52 dv

for any test function ¢, where
v' = cosf|cosfP —w sinf|sinb|?

is the postcollisional velocity and p > 0 measures the inelasticity. Equation (B.]) preserves
mass but makes the momentum and kinetic energy decrease to 0 at an exponential rate,
O(f(t)) = e 2P9(f0) + (e72! —e=2") <f°> with 3 > 0 given below. In particular, solutions
to (B.)) tend to the Dirac mass at 0.

As in the inelastic Maxwell model discussed above, we start by deriving a contraction
property for the gain operator Q1 defined by

et = [ [ [ s s

Proposition 12. If f and g belong to P2(R), then

2
Iwwww@wwmﬂ/(mmwmﬂmwwwg WE(f,9).
0
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In terms of solutions f(¢) and g(t) to the modified Kac equation (B.1]) with finite initial
energy only, the above proposition yields, as in previous sections, the bound

Wa(f(1), g()) < e Wa(f°, ")

where

2m
do
20=1-— / (1 cos 02"+ | sin 0|2(p+1)) 5 > 0.
0 T

This bound is optimal without further assumptions on the initial data f° and ¢° since
equality holds in the case when < f° >= 0 and ¢° = §, analogously to previous cases.

Proof.- Given a vector (v,w) in R? let C,,, denote the curve
{(v'(0), w'(9)),0 € [0,27]}

where
v'(0) = wvcosf|cosf|P —w sinf |sin P
w'(f) = wvsinf|sind|P + w cosf | cosb|P.
Let also U, ,, be the uniform probability distribution on C, ,,.
Given V and W two independent random variables distributed according to f, we note
that QT (f, f) is the first marginal on R of E[Uy,w], but also its second marginal by
symmetry. Then, we have the following result, which is the analogous of Lemmas P] and
[ for this model:

(5.2)

Lemma 13. Given two vectors (v,w) and (x,y) in R?, the squared Wasserstein distance
between the distributions U, ,, and Uy, is bounded by

(1=28) (Jv —a* + [w —yI*).

Proof.- One can transport the curve C,,, onto C,, by the linear map
,r,/
(a,b) — T(a,b) = —(a cosw — b sinw, a sinw + b cosw)
r

where r = Vo2 +w?, ' = /2?2 + y? and w is the angle between the vectors (v, w) and
(x,y) in case they do not vanish. We leave the reader discuss the case when either (z,y)
or (v, w) are zero. Then, analogously to the proof of Lemma [, one can define a transport
plan associated to the transport map 7' to get

W3 Uy, Uny) < / |T(a,b) — (a,b)|* dU, ., (a,b).
]R2

Furthermore, for all (a,b) in R?,

/

T acosw—bsinw) —a
" )

/

?(a sinw + b cosw) —-b

2
+

2

T(a,b) — (a,b)]* =

/ /

= ((r_>2 —2% cosw + 1) (a2 +b2)

,
|v—x|2+|w—y|2 2 2
= 2 + w? (a +b).
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Hence, we deduce

v — 2 + |w—yP

W22<uv,w7um,y) S

/R (@ ) (D)

1)2+U}2
_ \U—w|2+|w—y\2/2” 2 o2y 40
- e [ wor)

But
v'(0)% + w'(0)* = (| cos 0P + | sin 7PV (v* + w?)

by (B.2), so that
2 do
W3 Usatl) < | [ (10500 -+ 50 ) 220 (o = af o o)
0
which is the bound given by the lemma. 0O

We now continue the proof of Proposition [[3 First of all, let (V, X) and (W,Y") be two
independent couples of random variables, with V' and X distributed according to f, W
and Y according to g, optimal in the sense that

W3 (f,9) =E[[V - W[’] =E[IX - Y]

Then, by convexity of the squared Wasserstein distance again, it follows from Lemma [[J
that

WZQ (E [Z/[V,W] s E[U)Qy}) S E[WQQ(Z/[V7W7UX,Y):|
< (1-28)(E[V - W] + E[|X - Y[4])
=2(1-28) W3(f,9). (5.3)

Next, we remark that the measure Uy on R? has first and second marginals equal
by symmetry of the curve Cyy by a /2 rotation. This implies that the first and second
marginals of E[Uuw] on R? are equal to QT (f, f), and likewise for the measure E[ley]
with marginals Q% (g, g). We shall conclude the argument of Proposition [[ by using the
following general result:

Lemma 14. If the Borel probability measures ,ué- on R are the successive one-dimensional
marginals of the measure ' on RY, fori=1,2 and j =1,...,N, then

N
> Wiy, 15) < Wi (', 1),
7j=1
Proof.- Let m be a measure on RY x RY with marginals u! and p?, optimal in the sense

that
W2, 1) = / / v — w] dr(v, w).
RN xRN
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Then its marginal 7; on R,, x Ry, has itself marginals pj and 43, so

W3 (g, p3) < //R i v — w;|* drm; (v, w;).
X

N
The lemma follows by noting that Z lv; —w;|* = v —w|®. O
=1
In our particular case, Lemma [[4 ensures that

2 WQQ(Q—’—(JC) f)v Q+(ga g)) S W22 (E [Z/[V,W} 9 E[Z/[X,Y])
which concludes the proof of Proposition [[3 taking (b.3) into account. 0O

APPENDIX: UNIFORM IN TIME PROPAGATION OF FOURTH ORDER MOMENTS

In this appendix we derive a uniform propagation of fourth order moments / lv[* g(7,v) dv
R3

of solutions g to

2V (g) = BQlg.9) (5.4)
8

1—e2

where the operator (g, g) is defined as in (L) for 0 < e < 1 and F =
This result has been used in the proof of Theorem [f.

Proposition 15. If ¢° is a Borel probability measure on R? such that
lv[* ¢°(v) dv < oo,
R3
then the solution g to (5.4) with initial datum ¢° verifies
sup [ |v|*g(r,v)dv < .
7>0 JR3

Proof.- Without loss of generality we can assume that ¢°, and hence g(7) for all 7 > 0,
has zero mean velocity. We let

my(T) = /R3 lv|* g(7,v) dv

denote the fourth order moment of g(7). Then, using the weak formulation of the inelastic
Boltzmann equation, we have:

P [ 9l vgmoydos B [ o' Qo). g@)de 63

While the first term in the right hand side is simply 4 m4(7), the second term is computed
by
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Lemma 16. There exist some constants j; and ps, depending only on e, such that

[l @@t =—x [ pita)dosm( [ o))

i [ 0w g gtw) oo

for any probability measure g on R3 with finite moment of order 4 and zero mean velocity,
where

1 1—
A=l de =748 —2eh)  and  e= 26-
With this lemma in hand, (5.J) reads
d
Tr;%m = (4 - F )\> my(7) +m(T) (5.6)

where m(7) is a combination of second order moments, which are bounded in time since the
kinetic energy is preserved by equation (p.4). Moreover one can check from the expression
of E and A in terms of ¢ = (1 — ¢)/2 that

2
4—EXx=————[-14+2e+e*—4&>+2¢"
3e(l—¢)
which is negative for any 0 < € < 1/2, that is, for any 0 < e < 1. By Gronwall’s lemma
this ensures that my(7) is bounded uniformly in time if initially finite, and concludes the
argument to Proposition [[J. O

Let us remark that identity (B.6) is also useful to understand that moments are not
created by this equation in contrast to the hard-spheres case 21, B3]. In fact, if initially
moments are infinite, they will remain so. Thus, this is another reason why homogeneous
cooling states have only certain number of moments bounded (see [[q]).

We now turn to the proof of Lemma [[, whose result is given in [, Section 4] only in
the radial isotropic case, i.e., whenever g(v) depends only on |v|. By symmetry we start
by writing

/|v| Qg 9w /// |v|4+|w|4 v|* = Jw[*] do dv dw
R3 JR3 JS2

where
1 1— 1
o= §(v+w)—|—T€(v—w)+ +e\v—w|a
1 1— 1
w = §(v+w)— 46(v—w)— Ze|v—w|a.
Then we introduce the notation
v+ w v—w 1—e , 1+e
- 9 = 9 == 9 = 1 — =
U 5 U 5 € 5 € € 5
in which

V=u+eU+e|Ulo, vVV=u—ecU-€|Ulo, v=u+U, w=u-U.
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Then
|v'|2 = |u|2+(€2+52)|U|2+256|U|( )+2€(u-U)+26'|U|(u-o)
|w'|2 = |u|2+(52+52)|U|2+256|U|( )—25(u-U)—25'|U|(u-cr)
W = JuP+ U +2(u-U)
jw> = Jul+|UP =2 (u-U)

and eventually
S 4 = Jol* — ol
=[(e>+ %) = 1]|U|" + 2(e* + * = D|u’|U]* + 4(e> — 1) (u - U)*
+42?|UP (U -0)* + 4% U (u-0)?
+4e |U| [Jul® + (2 +?)UP] (U -0) +8c€ |U|(u-U) (u- o).
Integrating with respect to o in S? and taking the identities

do do do  |k|?
[52 i /52( V=0 /52( ) =3

into account, we obtain

1 do
00T 1= ol? = [l 52 = @ U1+ PP + 5 (- U
S2 ™
where
4 2
= (2 4+ -1+ §525’2, B=2[+”" -1+ ge’ﬂ, v =4(e* - 1).
Then, by definition of v and U in terms of v and w, the identities

1 o
// |U|4g(v)g(w)dvdw:g[m4+m§+2m§],
R3 xR3

1 _
/ / [l [UP g(v) g(w) dvdw = ~[my +m3 — 2778
R3xR3 8
2 1 2
J[ w07 gtw)dvdw = Gimg - m
R3xR3 8
hold with

ma= [ ol g@ye, mo= [ P g wi= [[ @ wPat)gtw) dvdu

since g has zero mean velocity. Collecting all terms, we obtain

and

[ 10l Qo)) do = <A gy + o
R

where

1 1
)\:—§<Oz+ﬁ+”y):§(1+46—782+483—284),
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1 1

M1=§(Oé+ﬁ—7) and Mzzz(a—ﬁ)

depend only on ¢, that is, only on e. This concludes the proof of Lemma [ O
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