7,353 research outputs found

    Computing Special LL-Values of Certain Modular Forms with Complex Multiplication

    Get PDF
    In this expository paper, we illustrate two explicit methods which lead to special LL-values of certain modular forms admitting complex multiplication (CM), motivated in part by properties of LL-functions obtained from Calabi-Yau manifolds defined over Q\mathbb Q

    Propagation characteristics and identification of type I cracks by the extended finite element method combined with modal analysis

    Get PDF
    Extended finite element frame based on Abaqus is applied to research the crack propagation problem of two-dimensional long rectangular thin plate. Presuppose type I crack with different horizontal locations and longitudinal dimensions, the propagation characteristics of the edge crack is discussed with the objects of structural flexibility of the thin plate, crack propagation length and plastic zone of crack tip etc. The results indicate that the horizontal location of the initial crack has a small influence on the crack propagation characteristics, and it only affects the local flexibility of the thin plate as well as the dimension and shape of plastic zone of crack tip. The longitudinal dimension of the initial crack obviously nonlinear influence on various parameters of the crack propagation characteristics. In view of the disastrous consequence of crack propagation, the vibration characteristics of the thin plate with different crack dimensions and crack locations are discussed based on the experiment and simulation modal analysis on the thin plate, thus providing basis for prior estimation and control for crack generation and propagation

    Simultaneously suppressing the dendritic lithium growth and polysulfides migration by a polyethyleneimine grafted bacterial cellulose membrane in lithium-sulfur batteries

    Get PDF
    Owing to the ultrahigh theoretical energy density and low-cost, lithium-sulfur (Li-S) batteries hold broad prospects as one of the promising substitutes for commercial lithium-ion batteries. The polysulfides shuttling originated from sulfur cathode and the lithium dendrite growth from lithium anode are the main challenges that hinder the commercial survival of Li-S batteries. Herein, thermal stable bacterial cellulose (BC) separator is successfully fixed with polyethyleneimine (PEI) by a scalable chemical grafting. The hydroxyl groups and amino groups in PEI grafted BC (PEI@BC) separator can participate in the formation of Li2O and Li3N, respectively, contributing to robust solid electrolyte interface with high ionic conductivity. Therefore, the lithium deposition is well regulated, resulting in a spherical and dendrite-free Li deposit pattern. The Li/Li symmetrical cell assembled with PEI@BC separator exhibits excellent cyclic stability, which can continuously plate/stripe for more than 820 h with an overpotential of āˆ¼ 40 mV at 2 mA cmāˆ’2. Meanwhile, the polar amino group can restrain the polysulfides migration via chemosorption. As a consequence of these merits, ultrahigh initial capacity (1402 mAh gāˆ’1 at 0.1C) and excellent rate performance (440.5 mAh gāˆ’1 at 2C) for Li-S full cell are achieved, presenting new insights into the fabrication of multifunctional separators for Li-S batteries

    Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry

    Get PDF
    The incompatible pathosystem between resistant cotton (Gossypium barbadense cv. 7124) and Verticillium dahliae strain V991 was used to study the cotton transcriptome changes after pathogen inoculation by RNA-Seq. Of 32ā€‰774 genes detected by mapping the tags to assembly cotton contigs, 3442 defence-responsive genes were identified. Gene cluster analyses and functional assignments of differentially expressed genes indicated a significant transcriptional complexity. Quantitative real-time PCR (qPCR) was performed on selected genes with different expression levels and functional assignments to demonstrate the utility of RNA-Seq for gene expression profiles during the cotton defence response. Detailed elucidation of responses of leucine-rich repeat receptor-like kinases (LRR-RLKs), phytohormone signalling-related genes, and transcription factors described the interplay of signals that allowed the plant to fine-tune defence responses. On the basis of global gene regulation of phenylpropanoid metabolism-related genes, phenylpropanoid metabolism was deduced to be involved in the cotton defence response. A closer look at the expression of these genes, enzyme activity, and lignin levels revealed differences between resistant and susceptible cotton plants. Both types of plants showed an increased level of expression of lignin synthesis-related genes and increased phenylalanine-ammonia lyase (PAL) and peroxidase (POD) enzyme activity after inoculation with V. dahliae, but the increase was greater and faster in the resistant line. Histochemical analysis of lignin revealed that the resistant cotton not only retains its vascular structure, but also accumulates high levels of lignin. Furthermore, quantitative analysis demonstrated increased lignification and cross-linking of lignin in resistant cotton stems. Overall, a critical role for lignin was believed to contribute to the resistance of cotton to disease

    Development of beam arrangement design for tunable diode laser absorption tomography reconstruction based on Tikhonov regularization parameter matrix

    Get PDF
    • ā€¦
    corecore