19 research outputs found

    Anti-mold, self-cleaning superhydrophobic bamboo fiber/polypropylene composites with mechanical durability

    Get PDF
    Bamboo fiber/polypropylene composites (BPCs) have been widely used in buildings, interior decoration, and automobile components. However, pollutants and fungi can interact with the hydrophilic bamboo fibers on the surface of Bamboo fiber/polypropylene composites, degrading their appearance and mechanical properties. To improve their anti-fouling and anti-mildew properties, a superhydrophobic modified Bamboo fiber/polypropylene composite (BPC-TiO2-F) was fabricated by introducing titanium dioxide (TiO2) and poly(DOPAm-co-PFOEA) onto the surface of a Bamboo fiber/polypropylene composite. The morphology of BPC-TiO2-F was analyzed by XPS, FTIR, and SEM. The results showed that TiO2 particles covered on Bamboo fiber/polypropylene composite surface via complexation between phenolic hydroxyl groups and Ti atoms. Low-surface-energy fluorine-containing poly(DOPAm-co-PFOEA) was introduced onto the Bamboo fiber/polypropylene composite surface, forming a rough micro/nanostructure that endowed BPC-TiO2-F with superhydrophobicity (water contact angle = 151.0° ± 0.5°). The modified Bamboo fiber/polypropylene composite exhibited excellent self-cleaning properties, and a model contaminant, Fe3O4 powder, was rapidly removed from the surface by water drops. BPC-TiO2-F showed excellent anti-mold performance, and no mold was on its surface after 28 days. The superhydrophobic BPC-TiO2-F had good mechanical durability and could withstand sandpaper abrasion with a weight load of 50 g, finger wiping for 20 cycles, and tape adhesion abrasion for 40 cycles. BPC-TiO2-F showed good self-cleaning properties, mildew resistance, and mechanical resistance, giving it promising applications for automotive upholstery and building decoration

    Experimental Comparison Study on Cyclic Behavior of Coupled Shear Walls with Two-Level-Yielding Steel Coupling Beam and RC Coupling Beam

    Full text link
    [EN] Coupled shear walls are widely used in high rise buildings, since they can not only provide efficient lateral stiffness but also behave outstanding energy dissipation ability especially for earthquake-resistance. Traditionally, the coupling beams are made of reinforced concrete, which are prone to shear failure due to low aspect ratio and greatly reduce the efficiency and ability of energy dissipation. For overcoming the shortcoming of concrete reinforced coupling beams (RCB), an innovative steel coupling beams called two-level-yielding steel coupling beam (TYSCB) is invented to balance the demand of stiffness and energy dissipation for coupled shear walls. TYSCBs are made of two parallel steel beams with yielding at two different levels. To verify and investigate the aseismic behaviour improvement of TYSCB-coupled shear walls, two 1/3 scale, 10-storey coupled shear wall specimens with TYSCB and RCB were tested under both gravity and lateral displacement reversals. These two specimens were designed with the same bearing capacity, thus to be easier to compare. The experimental TYSCB specimen demonstrated more robust cyclic performance. Both specimens reached 1% lateral drift, however, the TYSCB-coupled shear wall showed minimal strength degradation. Additionally, a larger amount of energy was dissipated during each test of the TYSCB specimen, compared with the RCB specimen. Based on the experimental results, design recommendations are provided.The work presented in this paper was supported by the Ministry of Science and Technology of China through the Thirteen Five Key Research & Development Scheme with Grant 2016YFC0701203.Pang, M.; Li, G.; Sun, F.; Li, L.; Sun, J. (2018). Experimental Comparison Study on Cyclic Behavior of Coupled Shear Walls with Two-Level-Yielding Steel Coupling Beam and RC Coupling Beam. En Proceedings of the 12th International Conference on Advances in Steel-Concrete Composite Structures. ASCCS 2018. Editorial Universitat Politècnica de València. 733-738. https://doi.org/10.4995/ASCCS2018.2018.7026OCS73373

    Promoting enzymatic hydrolysis of lignocellulosic biomass by inexpensive soy protein

    No full text
    Abstract Background Liquid hot water (LHW) pretreatment has been considered as one of the most industrially viable and environment-friendly methods for facilitating the transformation of lignocelluloses into biofuels through biological conversion. However, lignin fragments in pretreatment hydrolysates are preferential to condense with each other and then deposit back onto cellulose surface under severe conditions. Particularly, lignin tends to relocate or redistribute under high-temperature LHW pretreatment conditions. The lignin residues on the cellulose surface would result in significant nonproductive binding of cellulolytic enzymes, and therefore negatively affect the enzymatic conversion (EC) of glucan in pretreated substrates. Although additives such as bovine serum albumin (BSA) and Tween series have been used to reduce nonproductive binding of enzymes through blocking the lignin, the high cost or non-biocompatibility of these additives limits their potential in industrial applications. Results Here, we firstly report that a soluble soy protein (SP) extracted from inexpensive defatted soy powder (DSP) showed excellent performance in promoting the EC of glucan in LHW-pretreated lignocellulosic substrates. The addition of the SP (80 mg/g glucan) could readily reduce the cellulase (Celluclast 1.5 L®) loading by 8 times from 96.7 to 12.1 mg protein/g glucan and achieve a glucan EC of 80% at a hydrolysis time of 72 h. With the same cellulase (Celluclast 1.5 L®) loading (24.2 mg protein/g glucan), the ECs of glucan in LHW-pretreated bamboo, eucalyptus, and Masson pine substrates increased from 57%, 54% and 45% (without SP) to 87%, 94% and 86% (with 80 mg SP/g glucan), respectively. Similar effects were also observed when Cellic CTec2, a newer-generation cellulase preparation, was used. Mechanistic studies indicated that the adsorption of soluble SP onto the surface of lignin residues could reduce the nonproductive binding of cellulolytic enzymes to lignin. The cost of the SP required for effective promotion would be equivalent to the cost of 2.9 mg cellulase (Celluclast 1.5 L®) protein (or 1.2 FPU/g glucan), if a proposed semi-simultaneous saccharification and fermentation (semi-SSF) model was used. Conclusions Near-complete saccharification of glucan in LHW-pretreated lignocellulosic substrates could be achieved with the addition of the inexpensive and biocompatible SP additive extracted from DSP. This simple but remarkably effective technique could readily contribute to improving the economics of the cellulosic biorefinery industry

    Flame Retardation Modification of Paper-Based PVC Wallcoverings

    No full text
    The flame-retarded paper-based polyvinyl chloride (PVC) wallcoverings were successfully prepared, using plant fiber paper as base material and adding inorganic flame retardants and flame-retarded plasticizer as additives. Flame retardancy, thermostability, smoke suppression and mechanical properties were tested regarding to the prepared wallcoverings. The results showed that 2ZnO·3B2O3·3.5H2O could improve flame retardancy and thermostability of paper-based PVC wallcoverings; plasticizer tricresyl phosphate increased flame retardancy of the prepared materials auxiliarily. Also, flame-retarded paper-based PVC wallcoverings with higher flame retardancy, smoke suppression and mechanical property was prepared using plant fiber paper with fix quantity of 90 g/m3 as base material, using 2ZnO·3B2O3·3.5H2O as inorganic flame retardant, and using tricresyl phosphate as plasticizer. For the flame-retarded paper-based PVC wallcoverings in this study, the limit oxygen index (LOI) reaches 32.3, maximal smoke density is 16.91 %, and the horizontal and longitudinal wet tensile strength reaches 1.38 kN·m−1 and 1.51 kN·m−1 respectively. Meanwhile, its flame retardancy meets the requirements about flame retardancy for material Class B1 listed in Chinese National Standards GB 8624-2012, Classification for burning behavior of building materials and products. This research creates an effective path to prepare paper-based PVC wallcoverings with high flame retardancy

    Flame Retardation Modification of Paper-Based PVC Wallcoverings

    No full text
    The flame-retarded paper-based polyvinyl chloride (PVC) wallcoverings were successfully prepared, using plant fiber paper as base material and adding inorganic flame retardants and flame-retarded plasticizer as additives. Flame retardancy, thermostability, smoke suppression and mechanical properties were tested regarding to the prepared wallcoverings. The results showed that 2ZnO·3B2O3·3.5H2O could improve flame retardancy and thermostability of paper-based PVC wallcoverings; plasticizer tricresyl phosphate increased flame retardancy of the prepared materials auxiliarily. Also, flame-retarded paper-based PVC wallcoverings with higher flame retardancy, smoke suppression and mechanical property was prepared using plant fiber paper with fix quantity of 90 g/m3 as base material, using 2ZnO·3B2O3·3.5H2O as inorganic flame retardant, and using tricresyl phosphate as plasticizer. For the flame-retarded paper-based PVC wallcoverings in this study, the limit oxygen index (LOI) reaches 32.3, maximal smoke density is 16.91 %, and the horizontal and longitudinal wet tensile strength reaches 1.38 kN·m−1 and 1.51 kN·m−1 respectively. Meanwhile, its flame retardancy meets the requirements about flame retardancy for material Class B1 listed in Chinese National Standards GB 8624-2012, Classification for burning behavior of building materials and products. This research creates an effective path to prepare paper-based PVC wallcoverings with high flame retardancy

    TEMPO-Oxidized Cellulose with High Degree of Oxidation

    No full text
    In this paper, water-soluble 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose with a high degree of oxidation was prepared by a two-step process using bamboo dissolving pulp. The first step was to destroy the cellulose crystal I by NaOH/urea solution to obtain cellulose powder with decreased crystallinity. The second step was to oxidize the cellulose powder by TEMPO oxidation. The TEMPO-oxidized cellulose was analyzed by Fourier transform infrared spectroscopy (FTIR), conductimetry, X-ray diffraction (XRD), fiber analyzer, and transmission electron microscopy (TEM). FTIR showed that the hydroxymethyl groups in cellulose chains were converted into carboxyl groups. The degree of oxidation measured by conductimetry titration was as high as 91.0%. The TEMPO-oxidized cellulose was soluble in water for valuable polyelectrolytes and intermediates

    Transparent, smooth, and sustainable cellulose-derived conductive film applied for the flexible electronic device

    No full text
    A high-performance flexible conductive substrate is one of the key components for developing promising wearable devices. Concerning this, a sustainable, flexible, transparent, and conductive cellulose/ZnO/AZO (CZA) film was developed in this study. The cellulose was used as the transparent substrate. The added AZO was as the conductive layer and ZnO functioned as an interface buffer layer. Results showed that the interface buffer layer of ZnO effectively alleviated the intrinsic incompatibility of organic cellulose and inorganic AZO, resulting in the improvement of the performance of CZA film. In compared with the controlled cellulose/AZO (CA) film with 365 Ω/sq sheet resistance and 87% transmittance, this CZA film featured a low conductive sheet resistance of 115 Ω/sq and high transmittance of 89%, as well as low roughness of 1.85 nm Moreover, the existence of conducive ZnO buffer layer enabled the conductivity of CZA film to be stable under the bending treatment. Herein, a flexible electronic device was successfully prepared with the biomass materials, which would be available by a roll-to-roll production process.Peer reviewe

    Self-Healing Cellulose Nanocrystals-Containing Gels via Reshuffling of Thiuram Disulfide Bonds

    No full text
    Self-healing gels based on reshuffling disulfide bonds have attracted great attention due to their ability to restore structure and mechanical properties after damage. In this work, self-healing gels with different cellulose nanocrystals (CNC) contents were prepared by embedding the thiuram disulfide bonds into gels via polyaddition. By the reshuffling of thiuram disulfide bonds, the CNC-containing gels repair the crack and recover mechanical properties rapidly under visible light in air. The thiuram disulfide-functionalized gels with a CNC content of 2.2% are highly stretchable and can be stretched approximately 42.6 times of their original length. Our results provide useful approaches for the preparation of dynamic CNC-containing gels with implications in many related engineering applications
    corecore