811 research outputs found
Motivations for Using Information for Decision making in Virtual Communities The Moderating Effects of Usage Behavior
Virtual communities are increasingly being viewed as important shopping reference groups and are being used as a new medium for affecting sales. In virtual communities, individuals generally exchange product information with others. This information guides members on the best products and where to buy them. We investigated the motivation behind virtual community membersâ decision to use information when they inspire more individuals to join shopping reference groups and influence product sales. Most previous research on this subject has emphasized the influence of electronic word of mouth and the postersâ opinions regarding product choice. We further developed this idea by examining the various perspectives that are part of virtual communitiesâ nature vis-Ă -vis membersâ activities of posting, viewing, and accepting information.We also explored the comparative importance of motivating factors behind membersâintentions to use information for purchase-related decision making in different groups from three perspectives: the social exchange theory, gratifications theory, and the information adoption model. We collected data through an online survey and by examining respondentsâ actual posting behaviors. We showed that the importance of economic, relational, and social factors differs among groups. âInformation browsersâ mostly browse through information, rarely post messages, and consider relational and social factors as the main contributors to using information for decision making. âInformation consumersâ expect effective information, rarely post messages,and consider relational factors as a major determinant. âInformation providers,â the primary posters, seldom accept othersâ opinions and consider economic and social factors important for the intention of using information for decision making.
Available at: https://aisel.aisnet.org/pajais/vol4/iss1/2
Localized tail state distribution and hopping transport in ultrathin zinc-tin-oxide thin film transistor
Carrier transport properties of solution processed ultra thin (4 nm) zinc-tin oxide (ZTO) thin film transistor are investigated based on its transfer characteristics measured at the temperature ranging from 310K to 77K. As temperature decreases, the transfer curves show a parellel shift toward more postive voltages. The conduction mechanism of ultra-thin ZTO film and its connection to the density of band tail states have been substantiated by two approaches, including fitting logarithm drain current (log ID) to T-1/3 at 310K to 77K according to the two-dimensional Mott variable range hopping theory and the extraction of density of localized tail states through the energy distribution of trapped carrier density. The linear dependency of log ID vs. T-1/3 indicates that the dominant carrier transport mechanism in ZTO is the variable range hopping. The extracted value of density of tail states at the conduction band minimum is 4.75 x 10(20) cm(-3) eV(-1) through the energy distribution of trapped carrier density. The high density of localized tail states in the ultra thin ZTO film is the key factor leading to the room-temperature hopping transport of carriers among localized tail states. Published by AIP Publishing
Tensed Ontology Based on Simple Partial Logic
Simple partial logic (=SPL) is, broadly speaking, an extensional logic which allows for the truth-value gap. First I give a system of propositional SPL by partializing classical logic, as well as extending it with several non-classical truth-functional operators. Second I show a way based on SPL to construct a system of tensed ontology, by representing tensed statements as two kinds of necessary statements in a linear model that consists of the present and future worlds. Finally I compare that way with other two ways based on Ĺukasiewiczâs three-valued logic and branching temporal logic
Recommended from our members
Pyk2 activates the NLRP3 inflammasome by directly phosphorylating ASC and contributes to inflammasome-dependent peritonitis
The inflammasome adaptor protein, ASC, contributes to both innate immune responses and inflammatory diseases via self-oligomerization, which leads to the activation of the protease, caspase-1. Here, we report that the cytosolic tyrosine kinases, FAK and Pyk2, are differentially involved in NLRP3 and AIM2 inflammasome activation. The inhibition of FAK and Pyk2 with RNA interference or chemical inhibitors dramatically abolished ASC oligomerization, caspase-1 activation, and IL-1β secretion in response to NLRP3 or AIM2 stimulation. Pyk2 is phosphorylated by the kinase Syk and relocalizes to the ASC specks upon NLRP3 inflammasome activation. Pyk2, but not FAK, could directly phosphorylate ASC at Tyr146, and only the phosphorylated ASC could participate in speck formation and trigger IL-1β secretion. Moreover, the clinical-trial-tested Pyk2/FAK dual inhibitor PF-562271 reduced monosodium urate-mediated peritonitis, a disease model used for studying the consequences of NLRP3 activation. Our results suggest that although Pyk2 and FAK are involved in inflammasome activation, only Pyk2 directly phosphorylates ASC and brings ASC into an oligomerization-competent state by allowing Tyr146 phosphorylation to participate ASC speck formation and subsequent NLRP3 inflammation
A delta-doped quantum well system with additional modulation doping
A delta-doped quantum well with additional modulation doping may have potential applications. Utilizing such a hybrid system, it is possible to experimentally realize an extremely high two-dimensional electron gas (2DEG) density without suffering inter-electronic-subband scattering. In this article, the authors report on transport measurements on a delta-doped quantum well system with extra modulation doping. We have observed a 0-10 direct insulator-quantum Hall (I-QH) transition where the numbers 0 and 10 correspond to the insulator and Landau level filling factor ν = 10 QH state, respectively. In situ titled-magnetic field measurements reveal that the observed direct I-QH transition depends on the magnetic component perpendicular to the quantum well, and the electron system within this structure is 2D in nature. Furthermore, transport measurements on the 2DEG of this study show that carrier density, resistance and mobility are approximately temperature (T)-independent over a wide range of T. Such results could be an advantage for applications in T-insensitive devices
On the direct insulator-quantum Hall transition in two-dimensional electron systems in the vicinity of nanoscaled scatterers.
A direct insulator-quantum Hall (I-QH) transition corresponds to a crossover/transition from the insulating regime to a high Landau level filling factor ν > 2 QH state. Such a transition has been attracting a great deal of both experimental and theoretical interests. In this study, we present three different two-dimensional electron systems (2DESs) which are in the vicinity of nanoscaled scatterers. All these three devices exhibit a direct I-QH transition, and the transport properties under different nanaoscaled scatterers are discussed.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Optimisation of electrophoretic deposition parameters for gas diffusion electrodes in high temperature polymer electrolyte membrane fuel cells
Electrophoretic deposition (EPD) method was used to fabricate gas diffusion electrodes (GDEs) for high temperature polymer electrolyte membrane fuel cells (HT PEMFC). Parameters related to the catalyst suspension and the EPD process were studied. Optimum suspension conditions are obtained when the catalyst particles are coated with NafionÂŽ ionomer and the pH is adjusted to an alkaline range of about 8 e10. These suspensions yield good stability with sufficient conductivity to form highly porous catalyst layers on top of the gas diffusion layers (GDLs). GDEs were fabricated by applying various electric field strengths of which 100 V cm-1 yields the best membrane electrode assembly (MEA) performance. Compared to an MEA fabricated by the traditional hand sprayed (HS) method, the EPD MEA shows superior performance with a peak power increase of about 73% at similar platinum (Pt) loadings. Electrochemical Impedance Spectroscopy (EIS) analysis shows lower charge transfer resistance for the MEA fabricated via the EPD method compared to the HS MEA. The EPD GDE exhibits a greater total pore area (22.46 m2 g-1) compared to the HS GDE (13.43 m2 g-1) as well as better dispersion of the Pt particles within the catalyst layer (CL).Web of Scienc
Association between genetic variant on chromosome 12p13 and stroke survival and recurrence: a one year prospective study in Taiwan
<p>Abstract</p> <p>Background</p> <p>The association between ischemic stroke and 2 single nucleotide polymorphisms (SNPs) on chromosome 12p13, rs12425791 and rs11833579 appears inconsistent across different samples. These SNPs are close to the ninjurin2 gene which may alter the risk of stroke by affecting brain response to ischemic injury. The purpose of this study was to investigate the association between these two SNPs and ischemic stroke risk, as well as prognostic outcomes in a Taiwanese sample.</p> <p>Methods</p> <p>We examined the relations of these two SNPs to the odds of new-onset ischemic stroke, ischemic stroke subtypes, and to the one year risk of stroke-related death or recurrent stroke following initial stroke in a case-control study. A total of 765 consecutive patients who had first-ever ischemic stroke were compared to 977 stroke-free, age-matched controls. SNPs were genotyped by Taqman fluorescent allelic discrimination assay. The association between ischemic stroke and SNPs were analyzed by multivariate logistic regression. Cox proportional hazard model was used to assess the effect of individual SNPs on stroke-related mortality or recurrent stroke.</p> <p>Results</p> <p>There was no significant association between SNP rs12425791 and rs11833579 and ischemic stroke after multiple testing corrections. However, the marginal significant association was observed between SNP rs12425791 and large artery atherosclerosis under recessive model (OR, 2.30; 95%CI, 1.22-4.34; q-value = 0.062). Among the 765 ischemic stroke patients, 59 died or developed a recurrent stroke. After adjustment for age, sex, vascular risk factors and baseline stroke severity, Cox proportional hazard analysis indicated that the hazard ratios were 2.76 (95%CI, 1.34-5.68; q-value, 0.02) and 2.15 (95%CI, 1.15-4.02; q-value, 0.03) for individuals with homozygous variant allele of rs12425791 and rs11833579, respectively.</p> <p>Conclusions</p> <p>This is a precedent study that found genetic variants of rs12425791 and rs11833579 on chromosome 12p13 are independent predictors of stroke-related mortality or stroke recurrence in patients with incident ischemic stroke in Taiwan. Further study is needed to explore the details of the physiological function and the molecular mechanisms underlying the association of this genetic locus with ischemic stroke.</p
- âŚ