5,548 research outputs found

    Computing and Social Welfare: Minimizing the Societal Harm From Digital Transfor-mation While Preserving the Benefits of Innovation

    Get PDF
    Social Welfare Computing is an emerging discipline that seeks to direct technology to cause minimum social disruption, and in particular seeks to minimize the harm caused directly by technology. This is markedly different from the better understood strategic use of technology to create value or to address existing social needs. Innovative technologies that are widely adopted created significant value for their users; otherwise they would not be widely adopted. Often the companies that create them obtain new sources of wealth and power, which inevitably lead to new abuses of power and new forms of societal disruption. Societal disruption in turn requires social adaptation, including new regulations to influence the behavior of firms and to define and to protect the rights of an individual in the changed society. Social Welfare Computing seeks to guide social adaptation, combining insights from disciplines as varied as anthropology, business strategy, economics, strategic planning, and law

    Protein Evolution within a Structural Space

    Get PDF
    Understanding of the evolutionary origins of protein structures represents a key component of the understanding of molecular evolution as a whole. Here we seek to elucidate how the features of an underlying protein structural "space" might impact protein structural evolution. We approach this question using lattice polymers as a completely characterized model of this space. We develop a measure of structural comparison of lattice structures that is analgous to the one used to understand structural similarities between real proteins. We use this measure of structural relatedness to create a graph of lattice structures and compare this graph (in which nodes are lattice structures and edges are defined using structural similarity) to the graph obtained for real protein structures. We find that the graph obtained from all compact lattice structures exhibits a distribution of structural neighbors per node consistent with a random graph. We also find that subgraphs of 3500 nodes chosen either at random or according to physical constraints also represent random graphs. We develop a divergent evolution model based on the lattice space which produces graphs that, within certain parameter regimes, recapitulate the scale-free behavior observed in similar graphs of real protein structures.Comment: 27 pages, 7 figure

    Chandra/ACIS Subpixel Event Repositioning. II. Further Refinements and Comparison between Backside and Front-side Illuminated X-ray CCDs

    Get PDF
    We further investigate subpixel event repositioning (SER) algorithms in application to Chandra X-ray Observatory (CXO) CCD imaging. SER algorithms have been applied to backside illuminated (BI) Advanced CCD Imaging Spectrometer (ACIS) devices, and demonstrate spatial resolution improvements in Chandra/ACIS observations. Here a new SER algorithm that is charge split dependent is added to the SER family. We describe the application of SER algorithms to frontside illuminated (FI) ACIS devices. The results of SER for FI CCDs are compared with those obtained from SER techniques applied to BI CCD event data. Both simulated data and Chandra/ACIS observations of the Orion Nebular Cluster were used to test and evaluate the achievement of the various SER techniques.Comment: 30 pages, 9 figures, submitted to Ap

    Room temperature Suzuki coupling of aryl iodides, bromides, and chlorides using a heterogeneous carbon nanotube-palladium nanohybrid catalyst

    Get PDF
    International audiencePalladium nanoparticles were immobilized on multi-walled carbon nanotubes by a layer-by-layer approach, resulting in a well-defined assembly. The nanohybrid was found effective in promoting Suzuki cross couplings of various halogenated aromatics, including chlorinated ones, with arylboronic acids under sustainable conditions. The heterogeneous catalyst could also easily be recovered from the reaction mixture and reused with no loss of activity over several cycles

    Selective conversion of nitroarenes using a carbon nanotube-ruthenium nanohybrid

    Get PDF
    International audienceRuthenium nanoparticles were assembled on carbon nanotubes and the resulting nanohybrid was used in the hydrazine-mediated catalytic hydrogenation of various nitroarenes, at room temperature. Depending on the solvent, a selective transformation occurred, giving either access to the corresponding aniline or hydroxylamine derivative
    corecore