
Genomic Profiling Maps Loss of Heterozygosity and Defines
the Timing and Stage Dependence of Epigenetic and
Genetic Events in Wilms’ Tumors

Eric Yuan,1 Chi-Ming Li,1 Darrell J. Yamashiro,2 Jessica Kandel,3 Harshwardhan Thaker,4

Vundavalli V. Murty,4 and Benjamin Tycko1,4

1Institute for Cancer Genetics; 2Department of Pediatrics, Division of Pediatric Oncology;
3Department of Surgery, Division of Pediatric Surgery; and 4Department of Pathology,
Columbia University Medical Center, New York, New York

Abstract
To understand genetic and epigenetic pathways in

Wilms’ tumors, we carried out a genome scan for loss

of heterozygosity (LOH) using Affymetrix 10K single

nucleotide polymorphism (SNP) chips and

supplemented the data with karyotype information.

To score loss of imprinting (LOI) of the IGF2 gene, we

assessed DNA methylation of the H19 5V differentially

methylated region (DMR). Few chromosomal regions

other than band 11p13 (WT1) were lost in Wilms’

tumors from Denys-Drash and Wilms’ tumor-aniridia

syndromes, whereas sporadic Wilms’ tumors showed

LOH of several regions, most frequently 11p15 but also

1p, 4q, 7p, 11q, 14q, 16q, and 17p. LOI was common

in the sporadic Wilms’ tumors but absent in the

syndromic cases. The SNP chips identified novel

centers of LOH in the sporadic tumors, including a

2.4-Mb minimal region on chromosome 4q24-q25.

Losses of chromosomes 1p, 14q, 16q, and 17p were

more common in tumors presenting at an advanced

stage; 11p15 LOH was seen at all stages, whereas LOI

was associated with early-stage presentation. Wilms’

tumors with LOI often completely lacked LOH in the

genome-wide analysis, and in some tumors with

concomitant 16q LOH and LOI, the loss of

chromosome 16q was mosaic, whereas the H19 DMR

methylation was complete. These findings confirm

molecular differences between sporadic and syndromic

Wilms’ tumors, define regions of recurrent LOH, and

indicate that gain of methylation at the H19 DMR is

an early event in Wilms’ tumorigenesis that is

independent of chromosomal losses. The data further

suggest a biological difference between sporadic

Wilms’ tumors with and without LOI.

(Mol Cancer Res 2005;3(9):493–502)

Introduction
Since 1972 when Knudson and Strong analyzed epidemio-

logic data from Wilms’ tumor to develop the concept of tumor

suppressor genes (1), research on this pediatric kidney tumor

has continued to uncover important principles in cancer

genetics. Early findings were the recognition of the Wilms’

tumor-aniridia (WAGR) syndrome and its mapping to chromo-

some 11p13 (2-4) and the discovery of the WT1 tumor

suppressor gene in that chromosome band (5-7). WT1 is

mutated in f10% of Wilms’ tumors overall, predominantly in

the setting of WAGR and Denys-Drash syndromes but also in a

small subset of sporadic Wilms’ tumors (8-10).

WT1 mutations are rare in sporadic Wilms’ tumors; instead,

a second locus, called WT2 and mapping to chromosome

11p15.5, is the more common target of loss of heterozygosity

(LOH). WT2 most likely corresponds to the closely linked and

oppositely imprinted genes IGF2 and H19 in this chromosomal

band. In the f45% of sporadic Wilms’ tumors that have

11p15.5 LOH, there is a selective loss of maternal alleles

and duplication of paternal alleles (reviewed in ref. 11). This

results in biallelic expression of IGF2 mRNA and loss of

expression of H19 RNA. In another large group of sporadic

Wilms’ tumors, both parental alleles are retained, but the

maternal allele of H19 and its upstream insulator sequences

become hypermethylated at CpG sites, leading to the same end

point of biallelic IGF2 expression [loss of imprinting (LOI)]

and H19 silencing. In the Beckwith-Wiedemann syndrome, a

subset of affected individuals show gain of methylation at

H19mat and LOI of IGF2 in their somatic tissues, leading to

somatic overgrowth and a strong predisposition to Wilms’

tumor (12). Recently, rare Beckwith-Wiedemann syndrome

cases were identified with germ-line microdeletions in the H19

upstream sequences (13), a genetic finding that further supports

the equivalence of WT2 and IGF2/H19 .

In addition to chromosome band 11p15.5, cytogenetic and

LOH studies have implicated several other chromosomal

regions in sporadic Wilms’ tumors. One copy of the q-arm of

chromosome 16 is sometimes lost, typically via unbalanced

chromosomal translocations (see ref. 14 and references therein).

The resulting 16q hemizygosity correlates positively with tumor

anaplasia (14, 15). Other chromosomes previously implicated by

cytogenetics and/or LOH include losses and gains of portions of

chromosome 1 (16), abnormalities of chromosome 7, notably

i(7p) in which the p-arm is lost and q-arm is reduplicated

(17-21), and loss of chromosome 14q (22). To examine LOH at
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higher resolution and with complete genomic coverage and to

gain insights into the relationship between genetic and

epigenetic events in Wilms’ tumors, we have carried out a

genome-wide scan at high resolution in syndromic (WAGR or

Denys-Drash) and sporadic Wilms’ tumors using Affymetrix

10K single nucleotide polymorphism (SNP) chips. The results

of this scan, supplemented by DNAmethylation and cytogenetic

analyses, provide insights into the mechanism and timing of

genetic and epigenetic events in Wilms’ tumors.

Results
Genome-Wide Analysis of LOH in Sporadic and
Syndromic Wilms’ Tumors

We applied probes made from Wilms’ tumor and normal

kidney DNAs to Affymetrix 10K SNP chips. Allele call rates in

our series ranged from 74.7% to 99.6%, with the 74.7% call rate

representing an outlier case (mean call rate, 94.9%; median,

96.3%). We first validated the SNP chip data by comparing the

results for selected chromosomal regions with data from

conventional microsatellite analysis, RFLP analysis, and DNA

sequencing. We have genotyped previously many of the Wilms’

tumors for a series of microsatellite and RFLP markers on

chromosome 11p (23), and the LOH results for 25 of the 26

tumors included in both that previous study and the current one

were concordant. The single discrepancy was accounted for by

partial (mosaic) LOH, visible in microsatellite analysis but not

detected by the SNP chips. Similar concordance was evident

from comparing the current data with our prior microsatellite

genotyping for markers on chromosome 16q (14), with a single

discrepancy (1 of 25 cases), which was again accounted for by

low-level mosaic LOH, detected by microsatellite analysis but

not by the SNP chip. Additional independent validations of the

SNP chip data for a small region of reduction to hemizygosity

on chromosome 4q and for LOH of markers on chromosome 7p

are shown in subsequent sections.

Among the 62 sporadic Wilms’ tumors, matched tumor and

normal DNA samples were available for 46 cases, with

unpaired tumor DNA available from the remaining 16 cases.

The boundaries of regions of LOH could be ascertained at high

resolution for the cases with paired samples (Fig. 1, blue bars),

but the high density of SNPs on the microarrays also allowed

detection of large regions of allelic loss in the unpaired cases

(Fig. 1, green bars). Such regions, representing segments of

DNA greater than f15 Mb, are detected as contiguous

stretches of >100 SNPs giving uniformly homozygous

genotypes (AA and BB). We assessed specificity and sensitivity

of this method by reexamining the data for our paired tumor/

FIGURE 1. 10K SNP mapping of LOH in sporadic and syndromic Wilms’ tumors. The regions of LOH, with the boundaries determined by markers that
retain heterozygosity or by telomeres, are indicated by bars next to each chromosome. Red bars, data from syndromic Wilms’ tumors; blue and green bars,
data from sporadic Wilms’ tumors; blue bars, regions of LOH determined from tumors with paired normal DNA; red and green bars, regions of LOH
determined as contiguous stretches of >100 homozygous SNPs in tumors without paired normal DNA.
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normal cases, treating these tumors as unpaired. This procedure

indicated a moderately high sensitivity for LOH (67.4%), with a

high specificity (false-positive rate of 4.5%) using this cutoff of

>100 contiguous homozygous SNPs.

Examination of the euchromatic regions of all chromosome

arms, except the Y-chromosome, revealed chromosome 11p as

the most common site of allelic loss (Fig. 1). This finding is

consistent with prior LOH mapping by us and others (23-25).

These prior LOH surveys, and cytogenetics (26-29), have

implied that Wilms’ tumors are often genetically stable, and we

therefore expected a low baseline rate of LOH on other

chromosomes. As shown in Fig. 1, this baseline rate is in fact

very low, with only 12 of the 41 euchromatic chromosome arms

showing LOH at frequencies above 5%. The most prominent

‘‘secondary peaks’’ of LOH were on chromosome arms 11q, 7p,

16q, 14q, 17p, and 1p, in that order of frequency, with an

additional interesting region of recurrent LOH on 4q (Fig. 1).

The LOH on chromosome arm 11q reflected loss of alleles along

the entire chromosome in some cases, likely driven by selection

for loss of the distal p-arm, but the mapping also indicated an

independent region of LOH on the q-arm of this chromosome

(Fig. 1). As discussed below, an unexpectedly large percentage

of Wilms’ tumors, 12 (19%) sporadic cases in this series,

showed no detectable LOH. Of these 12 cases, 9 were tumor/

normal pairs, and the conclusion that these tumors lacked

LOH is therefore based on the full resolution of the 10K chips.

In contrast to the findings in the sporadic Wilms’ tumors,

nine Wilms’ tumors from WAGR or Denys-Drash syndromes

did not show LOH in any of these specific secondary regions

(Fig. 1). As predicted from prior work, these syndromic cases,

which invariably contain WT1 mutations, showed stretches of

homozygous SNPs (reflecting hemizygous germ-line deletions

encompassing WT1) centered on band 11p13, whereas the

sporadic Wilms’ tumors showed a more distal epicenter of LOH

at band 11p15 (Fig. 1). Consistent with the relative rarity of

WT1 mutations in sporadic Wilms’ tumors, only two of the

sporadic tumors showed LOH restricted to band 11p13, and in

one of these cases, we have confirmed previously the presence

of a WT1 mutation (9).

Mitotic Recombination Produces LOH on 11p15,
Whereas Reduction to Hemizygosity Produces LOH
for Other Chromosomal Regions

LOH can occur via at least two different pathways: Mitotic

recombination (crossing over) between the paternal and the

maternal homologues of a given chromosome can produce

homozygosity for alleles distal to the cross-over in one daughter

cell, whose clonal progeny go on to populate the tumor. This

pathway does not produce a net reduction in chromosomal copy

number; rather, it leads to loss of one set of parental alleles and

duplication of the other. This pathway is relevant to the 11p15.5

WT2 region, which contains the imprinted IGF2 gene, which is

active only on the paternal homologue and which therefore

undergoes a 2-fold increase in functional gene dosage when

there is loss of maternal and reduplication of paternal

chromosome 11p15.5 DNA. Alternatively, LOH can reflect a

true reduction to hemizygosity (i.e., a net loss of DNA, as

occurs with unbalanced chromosomal translocations, chromo-

somal deletions, and mitotic nondisjunctions).

Karyotypes from standard cytogenetic analysis were avail-

able for 22 of the sporadic Wilms’ tumors in our series. The

results combining SNP chip and cytogenetic data indicated that

LOH involving the p-arm of chromosome 11 is invariably due

to mitotic recombination producing no net reduction in DNA

copy number: in each of nine Wilms’ tumors with 11p LOH and

successful karyotyping, we observed two copies of chromo-

some 11. In contrast, LOH for chromosome arms 7p and 16q

typically reflected a net loss of DNA, with reduction to

hemizygosity. In four successfully karyotyped tumors with 7p

LOH by SNP chip analysis, we found physical loss of one copy

of the p-arm of chromosome 7 in each case. Similarly, for two

tumors with 16q LOH by SNP chips analysis and successful

karyotyping, both showed physical loss of the q-arm of chro-

mosome 16 resulting in hemizygosity. This net loss of DNA

was attributable in some cases to the formation of unbalanced

chromosomal translocations: isochromosome 7q and t(1;16),

respectively; however, in other cases, we observed simple

deletions of the relevant chromosome arms as illustrated for a

Wilms’ tumor with 7p LOH in Fig. 2.

Minimal Regions of LOH
The boundaries of the smallest regions of recurrent LOH

defined in the series of sporadic Wilms’ tumors are shown in

Fig. 3. Most of these regions are consistent with prior studies,

and the 10K SNP chip data highlight some additional areas that

may contain tumor suppressor genes. Notably, five sporadic

Wilms’ tumors showed LOH encompassing chromosome 4q,

and the SNP chip data, supplemented by higher resolution

mapping at individual SNPs, define a novel 2.4-Mb minimal

region of LOH (Figs. 3 and 4) that includes the CXXC4/IDAX

gene, encoding an inhibitor of the Wnt signaling pathway

(30-32). The results of RFLP analysis and direct sequencing

shown in Fig. 4 provide an independent validation of the SNP

chip data by confirming LOH in this region. We sequenced the

entire coding region of CXXC4 in two of the tumors with LOH,

including the case with the minimal deletion, and did not find

mutations. Southern blotting with quantitation by phosphor-

imaging showed CXXC4 hemizygosity in these cases (Fig. 4B).

This reduction in CXXC4 copy number may contribute to

Wilms’ tumor progression, but an additional nine genes are

present in the minimal region of 4q24-q25 LOH (Fig. 4A), and

these remain to be examined for mutations.

Several other small minimal regions of LOH on other

chromosomes are suggested by the data in Fig. 3. As is true for

the 4q24-q25 region, due to the overall genomic stability of

Wilms’ tumors, many of these regions are defined by single

tumor cases. In the future, pooling of data from multiple

independent case series analyzed by SNP chips may allow these

regions to be validated.

The Number of Chromosomes Affected by LOH in
Sporadic Wilms’ Tumors Increases with Clinical Stage
at Presentation

Advanced clinical stage at presentation, particularly meta-

static disease (stage IV), is an independent risk factor for

treatment failure in Wilms’ tumors (33), and local tumor spread

(stage III) has been associated with a greater probability of local

recurrence after treatment (34). Information concerning the

Genomic Profiling in Wilms’ Tumors
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clinical stage was available for 43 of the sporadic Wilms’ tumors

in our series. We plotted the number of chromosomal regions

affected by LOH in each tumor as a function of stage and found

that this number increased steadily with increasing stage (Fig. 5).

Somewhat surprisingly, fully 60% of stage I Wilms’ tumors

(confined to the kidney at presentation) showed no LOH (mean

value for number of regions affected by LOH per tumor at stage I

is 1.4). In contrast, most stage IV tumors (metastatic to distant

sites at presentation) contained three or more regions of LOH

(mean, 3.9) and all of these advanced-stage tumors showed at

least two regions of LOH. Because the transition from stage I-II

to stage III-IV has prognostic importance for both local

recurrence and treatment failure, we analyzed these data

statistically by comparing the number of chromosomal regions

with LOH in each tumor for the stage I-II cases versus stage III-

IV and found a significant difference (P = 0.006, t test).

Combining the stage I-III cases and comparing with stage IValso

revealed a significant difference (P = 0.004, t test).

The chromosomal region individually showing the strongest

statistical association of LOH with advanced clinical stage

was 16q (stage I-III compared with stage IV; P = 0.037,

Fisher’s exact test). Consistent with the significant overall

association of chromosomal deletions with advanced clinical

stage, trends for increasing LOH with increasing clinical stage

were also seen for chromosomes 1p, 14q, and 17p (Fig. 6A),

which were never lost in the stage I tumors. However, these did

not reach statistical significance individually probably due to

the small number of cases with LOH for each chromosome.

LOH encompassing chromosome band 11p15 occurred at

earlier stages, whereas loss of chromosome 7p did not show a

discernible association with clinical stage (Fig. 6B; data not

shown).

A likely target of the 17p LOH is the TP53 tumor

suppressor gene, a locus that shows a well-known association

with tumor progression in other systems and that has been

implicated previously as mutated in some anaplastic Wilms’

tumors (35). We sequenced several of the most frequently

mutated exons of TP53 (exons 5-9) in six of the Wilms’

tumors with 17p LOH and found a single case (a stage IV

tumor) with a loss-of-function mutation: a 4-bp insertion in

exon 5 that produced a frameshift and premature STOP codon

(data not shown). The remaining cases may have TP53

mutations in other exons or mutations in another gene on this

chromosome arm.

Gain of DNA Methylation at the H19 5 V Differentially
Methylated Region Frequently Precedes Chromosomal
Losses

As shown in Fig. 6B, LOI as indicated by biallelic DNA

methylation at the H19 5V differentially methylated region

(DMR) was more common in early-stage compared with late-

stage Wilms’ tumors (frequency of LOI in stage I-III versus

stage IV; P = 0.037, Fisher’s exact test). Strikingly, many of

these early-stage Wilms’ tumors with LOI entirely lacked

LOH in the genome-wide scan. Figure 7 shows the genome-

wide patterns of LOH for 58 sporadic Wilms’ tumors in which

we determined the LOI status: of the 22 tumors with LOI,

8 showed no evidence of LOH. Among the remaining 14

tumors with LOI, various chromosomes showed LOH, with

11q affected in 6 cases, 16q in 4 cases, and 7p in 4 cases. In

comparing the rates of LOH for these three chromosomal

regions in the tumors with and without LOI, none were

significantly associated with LOI (Fisher’s exact test, all

nonsignificant).

FIGURE 2. LOH in Wilms’ tumors reflects mitotic recombination affecting chromosome 11p15 but reduction to hemizygosity affects other chromosomal
regions. An example of a characteristic sporadic Wilms’ tumor karyotype is shown. Arrows, regions of DNA deletion; bars, regions of LOH detected by
analysis of paired tumor and normal on the SNP chips. Chromosome 11 is cytogenetically normal but showed LOH by SNP chip analysis.

Yuan et al.

Mol Cancer Res 2005;3(9). September 2005

496



These data indicate that LOI frequently precedes chromo-

somal losses in sporadic Wilms’ tumors. We found additional

evidence for this temporal sequence from analyzing mosai-

cism. In our prior study of chromosome 16q LOH in Wilms’

tumors using conventional microsatellite markers, we have

noticed that the loss of alleles on this chromosome is

sometimes partial, consistent with the loss being a late-stage

event that manifests as tissue mosaicism in the growing tumor

(14). Consistent with this scenario, for one of the cases in that

prior study, the 16q LOH only became clear when we used

DNA obtained after early passages of the tumor explant, and

for other cases, we also observed partial allele losses for 16q

markers. Because this is relevant to the relative timing of

the two events, we directly compared the extent of DNA

methylation at the H19 5V DMR with the extent of

chromosome 16q LOH in primary Wilms’ tumors. In the

tumor illustrated in Fig. 8A, the gain of DNA methylation was

complete, whereas the 16q LOH was partial, indicating that

the LOI had preceded the LOH. In fact, LOI can occur as a

preneoplastic lesion in Wilms’ tumor patients, being detectable

in the kidney parenchyma surrounding the tumor, even in the

absence of histologic abnormalities, such as nephrogenic rests.

We reported previously two cases of sporadic Wilms’ tumors

with this finding (36), and we have since found two additional

examples in our expanded case series. In one of these cases,

the SNP chip analysis revealed chromosome 7p LOH in the

tumor. As shown in Fig. 8B, a side-by-side analysis of H19 5V
DMR methylation and chromosome 7p LOH in the tumor and

adjacent kidney parenchyma from this case confirms that

epigenetic lesion (LOI) occurred well before the genetic lesion

(chromosomal loss) in the evolution of this tumor. As in our

previously reported cases (36), nephrogenic rests were not

found in standard histologic sections from this case and the

patient did not meet clinical criteria for Beckwith-Wiedemann

syndrome. However, the patient was in the 97th percentile for

height and 95th percentile for weight, suggesting somatic

overgrowth.

Discussion
Distinct Pathways of Wilms’ Tumor Development in
Sporadic versus Syndromic Cases

Work from several laboratories, including ours, has led to

the realization that the genetic and epigenetic events in the

formation of sporadic versus syndromic (Denys-Drash and

WAGR) Wilms’ tumors are largely distinct. First, WT1 loss-

of-function mutations are invariably present in the syndromic

tumors and are rare in the sporadic tumors (8-10). Second,

h-catenin (CTNNB1) gain-of-function mutations are common

in the syndromic tumors and, among the sporadic tumors, are

only found when a WT1 mutation is also present (9, 37).

Third, syndromic Wilms’ tumors, together with the rare

sporadic cases that have WT1 mutations, show a characteristic

gene expression signature that differs from that of the

common (WT1 wild-type/CTNNB1 wild-type) sporadic cases

(9). Fourth, Wilms’ tumors occurring in Denys-Drash and

WAGR syndrome showed a lower frequency of IGF2 LOI

compared with sporadic Wilms’ tumors (38), a finding that is

substantiated by our current data. Most recently, Ruteshouser

et al. reported a genome scan similar in design to ours, which

uncovered distinct patterns of LOH in syndromic versus

sporadic Wilms’ tumors (39). Our current data comparing

syndromic and sporadic Wilms’ tumors are consistent with

FIGURE 3. Minimal regions of recurrent LOH in sporadic Wilms’ tumors. The boundaries of all regions showing LOH in four or more tumors are indicated
by dbSNP ID numbers. The bars indicating LOH are color coded as in Fig. 1.
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these prior reports: we found no evidence of LOI in any of the

nine syndromic Wilms’ tumors in our series and found a

different pattern of LOH in these cases compared with our

series of sporadic tumors.

Regions of Recurrent LOH in Sporadic Wilms’ Tumors
Our findings highlight known and novel regions of LOH in

sporadic Wilms’ tumors. For the known regions of recurrent

loss, including chromosome 1p, 7p, 11p, 11q, 14q, and 16q, the

minimal regions of LOH remain large. But included in our data

are several smaller regions of recurrent LOH, notably a 2.4-Mb

region on chromosome 4q24-q25. This region of DNA contains

several interesting genes, including the CXXC4 gene encoding a

Wnt pathway inhibitor. We did not find mutations in this gene,

but quantitation Southern blot analysis indicated CXXC4

hemizygosity in the tumors with LOH, and it is possible that a

reduction in CXXC4 gene dosage might contribute to sporadic

Wilms’ tumor progression. Alternatively, one of the other genes

in the region could be the relevant target of loss. The NPNT/

LOC255743 gene, encoding an apparent orthologue of the

mouse nephronectin gene, is another interesting candidate tumor

suppressor, as nephronectin is an extracellular matrix component

that is a ligand for a8/h1 integrin, which is in turn a molecule that

is essential for metanephric kidney maturation (40-44).

Ruteshouser et al. reported previously a restricted region of

chromosome 9q LOH in Wilms’ tumors (39). In our series, four

sporadic tumors showed 9q LOH (Fig. 1). The regions of LOH in

two of our cases do not overlapwith each other or with theminimal

region defined by Ruteshouser et al., whereas the two other cases

showed large segments of LOH that do include their minimal

region. Analysis of additional cases will be needed to define

the molecular anatomy of chromosome 9q in Wilms’ tumors.

FIGURE 4. Validation of the SNP chip data for the minimal region of LOH on chromosome 4q24-q25. A. DNA sequencing and RFLP analysis of five SNPs
defining the minimal region of LOH (the same region of chromosome band 4q24-q25 as in Fig. 3). SNPs rs233973 and rs17036613 show retention of
heterozygosity and define the borders of the region. Arrows, direction of transcription of named genes in this region. B. Reduction to hemizygosity shown by
quantitative Southern blot analysis using simultaneous hybridization with ADD1 (chromosome 4p16.3) and CXXC4 (chromosome 4q24-q25) probes. The
corresponding signals of the two bands from phosphorimaging are shown (right ). Paired samples from two cases with LOH encompassing chromosome band
4q24-q25 are indicated: N, normal kidney; T, Wilms’ tumor.

Yuan et al.
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Stage Dependence and Timing of Genetic and Epige-
netic Events in Sporadic Wilms’ Tumors

Our study goes beyond prior work in providing a

comprehensive analysis of both genome-wide LOH and LOI

in a large series of Wilms’ tumors. The results, showing LOI

more frequent in early-stage tumors and LOH, particularly for

chromosome arms 1p, 14q, 16q, and 17p, more frequent in late-

stage tumors, have implications for the timing and mechanism

of LOI. The data show that LOI is an early event, often

occurring in the complete absence of LOH. This finding is

consistent with two prior observations. First, gain of methyl-

ation in H19 upstream DNA sequences (as well as in the

transcribed region of the H19 gene), which is the DNA

counterpart of LOI that is scored in this and many other

studies, can be seen in the nonneoplastic kidney parenchyma

of a substantial group of sporadic Wilms’ tumor patients

(36, 45). Second, IGF2 LOI associated with gain of

methylation at the H19 5V DMR in various somatic tissues is

the defining feature of the class of Beckwith-Wiedemann

syndrome that is associated with a predisposition to Wilms’

tumor (12, 46, 47). Recently, it has been suggested that rare

cases of sporadic Wilms’ tumor might have LOI secondary to

LOH affecting the chromosome 16q CTCF gene (48). Our data

indicating that LOI usually precedes chromosome 16q LOH

and is not statistically associated with loss of this chromosome

arm do not provide positive support for this scenario. However,

the CTCF protein plays an important role as an insulator

binding protein at the H19 5VDMR, and our results do not rule

out the possibility of rare Wilms’ tumors in which CTCF

hemizygosity may contribute to LOI.

The fact that sporadic Wilms’ tumors with LOI that present

at early clinical stages often show no LOH raises interesting

questions about the molecular pathogenesis of these cancers.

Stage I Wilms’ tumors, although confined to the kidney in

which they arise, are nonetheless large neoplasms, which often

come to clinical attention based on effects from the tumor mass.

As the research community makes plans for large-scale cancer

genome and cancer epigenome projects, such tumors may offer

the opportunity to answer questions about the relative require-

ments for genetic versus epigenetic events in the early stages of

tumor formation. Lastly, our finding that LOI is less common in

Wilms’ tumors that are metastatic at clinical presentation

compared with cases in which the tumor presents at an earlier

clinical stage suggests that the tumors with LOI may be

biologically different from those with LOH.

Materials and Methods
Tumor Samples and DNA/RNA Preparation

Biopsies of 62 sporadic and 9 syndromic Wilms’ tumor and,

when available, adjacent normal kidney tissue were obtained

with institutional review board approval. Of the sporadic

Wilms’ tumors, 10 were stage I, 12 were stage II, 14 were stage

III, and 8 were stage IV. Stage information was not available for

the remaining 18 sporadic tumors. DNA was extracted by

proteinase K-SDS lysis followed by phenol-chloroform extrac-

tion and ethanol precipitation. DNA quality was assessed by gel

electrophoresis and ethidium bromide staining, and only

samples with intact high molecular weight DNA were used

for preparing SNP chip probes. RNA was prepared from tissue

pulverized under liquid nitrogen and lysed in Trizol reagent

(Invitrogen, Carlsbad, CA).

FIGURE 6. Correlations of LOH and LOI with clinical stage in sporadic
Wilms’ tumors. A. Data for chromosome arms 1p, 14q, 16q, and 17p. B.
Data for chromosome band 11p15 and IGF2/H19 LOI (assessed based on
biallelic methylation at the H19 5VDMR). In this series of tumors, the only
chromosomal region affected by LOH at stage I is band 11p15. LOI
accounts for another large group of tumors at stage I. In contrast, LOH for
the other frequently affected chromosomal regions accumulates only at
higher clinical stages.

FIGURE 5. Number of chromosomal regions affected by LOH
according to clinical stage in sporadic Wilms’ tumors at presentation.
Advanced-stage Wilms’ tumors accumulate multiple regions of LOH. Most
stage I Wilms’ tumors contain no LOH regions, whereas no stage IV
tumors contain fewer than two LOH regions.
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Cytogenetics
A portion of the tumor was placed in MEM immediately

after surgery for cytogenetic analysis. Tumor tissues were

minced using scalpel blade and digested with 200 units/mL

collagenase in complete DMEM for 2 to 12 hours.

Dissociated cells were washed twice with DMEM and

cultures were set up in complete DMEM supplemented

with insulin-transferrin-sodium selenate (Invitrogen). Tumor

cells grown for 2 to 10 days were harvested for meta-

phase preparation, g-banded, and analyzed by standard pro-

cedures (14).

Probe Preparation and SNP Chip Hybridization
Probes were prepared from the genomic DNA samples

according to the manufacturer’s instructions (Affymetrix

GeneChip Mapping Assay). Where necessary, DNA was

concentrated using sodium acetate extraction before digesting

with XbaI. To generate the required 20 Ag DNA, five

(instead of four) PCR reactions were set up. PCR product

was concentrated using either QIAquick PCR Purification kit

or MiniElute UF PCR Purification kit (Qiagen, Hilden,

Germany).

Analysis of SNP Chip Data
Alleles (AA, AB, or BB) at each SNP were called using

the algorithm of Liu et al. (49) as implemented in the

Affymetrix software package GDAS, and the data displayed in

a spreadsheet sorted by chromosome and nucleotide position

using Build 34 of the human genome. For normal/tumor pairs,

LOH at a given SNP was identified as an AB-to-AA or AB-

to-BB conversion. For unpaired tumor samples, regional LOH

was scored whenever an uninterrupted contiguous stretch of

>100 homozygous (AA or BB) genotypes was encountered

(see Results).

Southern Blotting and Northern Blotting
We analyzed CpG methylation in the H19 5V DMR by

Southern blotting after digestion of genomic DNA with

methylation-sensitive restriction enzymes as described previ-

ously (14). For measuring DNA copy number at the CXXC4

gene, genomic DNA from Wilms’ tumors and matched nonneo-

plastic kidney parenchyma was digested with RsaI and the

Southern blot was hybridized simultaneously with 32P-labeled

probes for CXXC4 intron 3 (intron 1 in published sequence) on

chromosome arm 4q and intron 1 of the ADD1 gene on

FIGURE 7. Genome-wide LOH analysis in sporadic Wilms’ tumors with and without LOI. Chromosomes are numbered at the top, with the p- and q-arms
represented by the left and right columns. Black rectangles, LOH; the p-arms of the acrocentric chromosomes were not queried by the SNP chips (gray ).
Wilms’ tumors with LOI have a lower overall frequency of LOH than those without LOI, and no region of LOH is specifically associated with LOI.
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chromosome arm 4p. Probes were generated by genomic PCR

with CXXC4 PCR primers: CCATATGGACTTGACTTAGTGC

andCCTAGCAAAGGTGAACACCTGandADD1 PCRprimers:

AATATCATGTAACTACAGAGACTC and GCAAGAAGAAT-

CACGGAGCGT. Northern blots were done after electrophoresis

of 6 Ag denatured total RNA through 1% agarose gels containing

formaldehyde.

DNA Sequencing and RFLP Analysis
For analyzing LOH in the minimal region of LOH on

chromosome 4q, genomic PCR primers were rs233973-US

(TGGTGGTGGTAAGGCAGAGC) and rs233973-DS

(GGTGGGTGGTGTTTCAGTCG), PCR product digested

with Tsp45I; rs950882-US (ATGATGCAGGCCAAGGAGCT)

and rs950882-DS (GTAAGTTCCACAGCGTAGGCA), PCR

product digested with BccI; and rs959482-US (ACTCT-

GAGGCCAAACTCCTTG) and rs959482-DS (CAGGGTTCT-

CCCCATTCAGC), PCR product digested with PsiI. CXXC4

intron 1 SNP (identified by us; rs number not assigned)

CXXC4-intron1-US (GGTGTCCACGTCCCTGCGT) and

CXXC4-intron1-DS (TTCACAATCCCAACGGACAGC),

PCR product directly sequenced; rs17036613-US (ATATAAT-

GTTCTTGGAGTACTGTG) and rs17036613-DS (CTTGTT-

CAGATATGCACTATGAC), PCR product directly sequenced.

Primer sequences for amplifying and sequencing the coding

region of CXXC4 are available on request. Exons 5 to 9 of the

TP53 gene were sequenced after genomic PCR using flanking

intronic primers; primer sequences are available on request. The

RFLP for chromosome 7p was assessed by genomic PCR using

primers rs720380-F1 (AGTTGGCTAGACCATGACACC) and

rs720380-R1 (TTCCTCTAGAACCATCCTTGG) followed by

EcoRV digestion.

FIGURE 8. Timing of gain of methylation at the H19 5VDMR relative to LOH at 16q and 7p in Wilms’ tumors. A. Gain of methylation at the H19 5VDMR
preceding LOH for chromosome 16q. DNA methylation of the H19 5VDMR was assessed by Southern blotting (left ). Biallelic DNA methylation is visualized
as complete protection from digestion by the methylation-sensitive enzymes Cfo I and Hpa II in the tumor DNA, seen as absence of the low molecular weight
restriction fragments (dashed line ) and relatively increased intensity of the high molecular weight intact Rsa I fragments (solid line ). R, Rsa I; C, Cfo I, H,
Hpa II. See ref. 14 for a map of the H19 DMR probe. Mosaicism for LOH at a microsatellite marker on band 16q23.1 is observed in the same primary Wilms’
tumor DNA with partial loss of the lower band, whereas there is nearly complete LOH in the tissue culture explant of this tumor after three passages (right ).
WT1, Wilms’ tumor; Ki1, corresponding normal kidney; CL1, tumor explant. B. Gain of methylation at the H19 5VDMR preceding LOH for chromosome 7p. In
this case, the Wilms’ tumor (WT3 ) shows both gain of methylation at the H19 5VDMR as indicated by Southern blotting (left ) and LOH for chromosome 7p as
indicated by the SNP chip data and confirmed by PCR/RFLP analysis (right ). The nonneoplastic kidney parenchyma from this case (Ki3 ) shows substantial
gain of methylation at the H19 5V DMR (left) but does not show LOH for chromosome 7p (right ). For comparison, a kidney from a different Wilms’ tumor
patient (Ki2) with an essentially normal pattern of monoallelic H19 5VDMR methylation is included (left ). Msp I restriction enzyme (non-methylation-sensitive
isoschizomer of Hpa II) was included in this Southern analysis to show the band pattern from complete digestion. R, Rsa I; H, Hpa II; M, Msp I.
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