3,623 research outputs found

    Improved Approximation Algorithms for Computing k Disjoint Paths Subject to Two Constraints

    Full text link
    For a given graph GG with positive integral cost and delay on edges, distinct vertices ss and tt, cost bound CZ+C\in Z^{+} and delay bound DZ+D\in Z^{+}, the kk bi-constraint path (kkBCP) problem is to compute kk disjoint stst-paths subject to CC and DD. This problem is known NP-hard, even when k=1k=1 \cite{garey1979computers}. This paper first gives a simple approximation algorithm with factor-(2,2)(2,2), i.e. the algorithm computes a solution with delay and cost bounded by 2D2*D and 2C2*C respectively. Later, a novel improved approximation algorithm with ratio (1+β,max{2,1+ln1β})(1+\beta,\,\max\{2,\,1+\ln\frac{1}{\beta}\}) is developed by constructing interesting auxiliary graphs and employing the cycle cancellation method. As a consequence, we can obtain a factor-(1.369,2)(1.369,\,2) approximation algorithm by setting 1+ln1β=21+\ln\frac{1}{\beta}=2 and a factor-(1.567,1.567)(1.567,\,1.567) algorithm by setting 1+β=1+ln1β1+\beta=1+\ln\frac{1}{\beta}. Besides, by setting β=0\beta=0, an approximation algorithm with ratio (1,O(lnn))(1,\, O(\ln n)), i.e. an algorithm with only a single factor ratio O(lnn)O(\ln n) on cost, can be immediately obtained. To the best of our knowledge, this is the first non-trivial approximation algorithm for the kkBCP problem that strictly obeys the delay constraint.Comment: 12 page

    Amplitude analysis of e+e−→VP with the CLEO measurements

    Get PDF
    AbstractWith the measured cross sections for e+e−→vector–pseudoscalar (VP) at s=3.773 GeV and s=3.671 GeV by the CLEO Collaboration, we perform a global amplitude analysis to study the possible interference effects between the continuum process via virtual photon and the ψ(3770) resonance decay. It is found that such interference may significantly affect the measurement of the ψ(3770)→exclusive non-DD¯ decays. By taking the interference into account, we extract the branching fraction for ψ(3770)→ρπ

    An island based hybrid evolutionary algorithm for optimization

    Get PDF
    This is a post-print version of the article - Copyright @ 2008 Springer-VerlagEvolutionary computation has become an important problem solving methodology among the set of search and optimization techniques. Recently, more and more different evolutionary techniques have been developed, especially hybrid evolutionary algorithms. This paper proposes an island based hybrid evolutionary algorithm (IHEA) for optimization, which is based on Particle swarm optimization (PSO), Fast Evolutionary Programming (FEP), and Estimation of Distribution Algorithm (EDA). Within IHEA, an island model is designed to cooperatively search for the global optima in search space. By combining the strengths of the three component algorithms, IHEA greatly improves the optimization performance of the three basic algorithms. Experimental results demonstrate that IHEA outperforms all the three component algorithms on the test problems.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Q2Q^2--Dependence of the Gerasimov-Drell-Hearn Sum Rule

    Full text link
    We test the Gerasimov-Drell-Hearn (GDH) sum rule numerically by calculating the total photon absorption cross sections σ1/2\sigma_{1/2} and σ3/2\sigma_{3/2} on the nucleon via photon excitation of baryon resonances in the constituent quark model. A total of seventeen, low-lying, non-strange baryon resonances are included in this calculation. The transverse and longitudinal interference cross section, σ1/2TL\sigma_{1/2}^{TL}, is found to play an important role in the study of the Q2Q^2 variation of the sum rule. The results show that the GDH sum rule is saturated by these resonances at a confidence level of 94%. In particular, the P33(1232)P_{33}(1232) excitation largely saturates the sum rule at Q2=0Q^2 = 0, and dominates at small Q2Q^2. The GDH integral has a strong Q2Q^2-dependence below Q2=1.0GeV2Q^2= 1.0 {GeV}^2 and changes its sign around Q2=0.3GeV2Q^2= 0.3 {GeV}^2. It becomes weakly Q2Q^2-dependent for Q2>1.0GeV2Q^2 > 1.0 {GeV}^2 because of the quick decline of the resonance contributions. We point out that the Q2Q^2 variation of the GDH sum rule is very important for understanding the nucleon spin structure in the non-perturbative QCD region.Comment: revtex, 17 pages, 3 ps figs include

    Galaxy infall kinematics as a test of modified gravity

    Get PDF
    Infrared modifications of General Relativity (GR) can be revealed by comparing the mass of galaxy clusters estimated from weak lensing to that from infall kinematics. We measure the 2D galaxy velocity distribution in the cluster infall region by applying the galaxy infall kinematics (GIK) model developed by Zu and Weinberg (2013) to two suites of f(R) and Galileon modified gravity simulations. Despite having distinct screening mechanisms, namely, the Chameleon and the Vainshtein effects, the f(R) and Galileon clusters exhibit very similar deviations in their GIK profiles from GR, with ~ 100-200 k/s enhancement in the characteristic infall velocity at r=5 Mpc/h and 50-100 km/s broadening in the radial and tangential velocity dispersions across the entire infall region, for clusters with mass ~ 10^{14} Msol/h at z=0.25. These deviations are detectable via the GIK reconstruction of the redshift--space cluster-galaxy cross-correlation function, xi_cg^s(r_p,r_\pi), which shows ~ 1-2 Mpc/h increase in the characteristic line-of-sight distance r_\pi^c at r_p<6 Mpc/h from GR predictions. With overlapping deep imaging and large redshift surveys in the future, we expect that the GIK modelling of xi_cg^s, in combination with the stacked weak lensing measurements, will provide powerful diagnostics of modified gravity theories and the origin of cosmic acceleration

    The Monge-Amp\`ere operator and geodesics in the space of K\"ahler potentials

    Full text link
    It is shown that geodesics in the space of K\"ahler potentials can be uniformly approximated by geodesics in the spaces of Bergman metrics. Two important tools in the proof are the Tian-Yau-Zelditch approximation theorem for K\"ahler potentials and the pluripotential theory of Bedford-Taylor, suitably adapted to K\"ahler manifolds.Comment: 25 pages, no figure, minor misprints correcte

    Heat flow method to Lichnerowicz type equation on closed manifolds

    Full text link
    In this paper, we establish existence results for positive solutions to the Lichnerowicz equation of the following type in closed manifolds -\Delta u=A(x)u^{-p}-B(x)u^{q},\quad in\quad M, where p>1,q>0p>1, q>0, and A(x)>0A(x)>0, B(x)0B(x)\geq0 are given smooth functions. Our analysis is based on the global existence of positive solutions to the following heat equation {ll} u_t-\Delta u=A(x)u^{-p}-B(x)u^{q},\quad in\quad M\times\mathbb{R}^{+}, u(x,0)=u_0,\quad in\quad M with the positive smooth initial data u0u_0.Comment: 10 page

    Formation of superdense hadronic matter in high energy heavy-ion collisions

    Get PDF
    We present the detail of a newly developed relativistic transport model (ART 1.0) for high energy heavy-ion collisions. Using this model, we first study the general collision dynamics between heavy ions at the AGS energies. We then show that in central collisions there exists a large volume of sufficiently long-lived superdense hadronic matter whose local baryon and energy densities exceed the critical densities for the hadronic matter to quark-gluon plasma transition. The size and lifetime of this matter are found to depend strongly on the equation of state. We also investigate the degree and time scale of thermalization as well as the radial flow during the expansion of the superdense hadronic matter. The flow velocity profile and the temperature of the hadronic matter at freeze-out are extracted. The transverse momentum and rapidity distributions of protons, pions and kaons calculated with and without the mean field are compared with each other and also with the preliminary data from the E866/E802 collaboration to search for experimental observables that are sensitive to the equation of state. It is found that these inclusive, single particle observables depend weakly on the equation of state. The difference between results obtained with and without the nuclear mean field is only about 20\%. The baryon transverse collective flow in the reaction plane is also analyzed. It is shown that both the flow parameter and the strength of the ``bounce-off'' effect are very sensitive to the equation of state. In particular, a soft equation of state with a compressibility of 200 MeV results in an increase of the flow parameter by a factor of 2.5 compared to the cascade case without the mean field. This large effect makes it possible to distinguish the predictions from different theoretical models and to detect the signaturesComment: 55 pages, latex, + 39 figures available upon reques

    On fiber dispersion models: exclusion of compressed fibers and spurious model comparisons

    Get PDF
    Fiber dispersion in collagenous soft tissues has an important influence on the mechanical response, and the modeling of the collagen fiber architecture and its mechanics has developed significantly over the last few years. The purpose of this paper is twofold, first to develop a method for excluding compressed fibers within a dispersion for the generalized structure tensor (GST) model, which several times in the literature has been claimed not to be possible, and second to draw attention to several erroneous and misleading statements in the literature concerning the relative values of the GST and the angular integration (AI) models. For the GST model we develop a rather simple method involving a deformation dependent dispersion parameter that allows the mechanical influence of compressed fibers within a dispersion to be excluded. The theory is illustrated by application to simple extension and simple shear in order to highlight the effect of exclusion. By means of two examples we also show that the GST and the AI models have equivalent predictive power, contrary to some claims in the literature. We conclude that from the theoretical point of view neither of these two models is superior to the other. However, as is well known and as we now emphasize, the GST model has proved to be very successful in modeling the data from experiments on a wide range of tissues, and it is easier to analyze and simpler to implement than the AI approach, and the related computational effort is much lower
    corecore