69,484 research outputs found

    Power Spectra in Global Defect Theories of Cosmic Structure Formation

    Full text link
    An efficient technique for computing perturbation power spectra in field ordering theories of cosmic structure formation is introduced, enabling computations to be carried out with unprecedented precision. Large scale simulations are used to measure unequal time correlators of the source stress energy, taking advantage of scaling during matter and radiation domination, and causality, to make optimal use of the available dynamic range. The correlators are then re-expressed in terms of a sum of eigenvector products, a representation which we argue is optimal, enabling the computation of the final power spectra to be performed at high accuracy. Microwave anisotropy and matter perturbation power spectra for global strings, monopoles, textures and non-topological textures are presented and compared with recent observations.Comment: 4 pages, compressed and uuencoded RevTex file and postscript figure

    Uhlenbeck-Donaldson compactification for framed sheaves on projective surfaces

    Full text link
    We construct a compactification MμssM^{\mu ss} of the Uhlenbeck-Donaldson type for the moduli space of slope stable framed bundles. This is a kind of a moduli space of slope semistable framed sheaves. We show that there exists a projective morphism γ ⁣:MssMμss\gamma \colon M^{ss} \to M^{\mu ss}, where MssM^{ss} is the moduli space of S-equivalence classes of Gieseker-semistable framed sheaves. The space MμssM^{\mu ss} has a natural set-theoretic stratification which allows one, via a Hitchin-Kobayashi correspondence, to compare it with the moduli spaces of framed ideal instantons.Comment: 18 pages. v2: a few very minor changes. v3: 27 pages. Several proofs have been considerably expanded, and more explanations have been added. v4: 28 pages. A few minor changes. Final version accepted for publication in Math.

    Reduced dynamics with renormalization in solid-state charge qubit measurement

    Full text link
    Quantum measurement will inevitably cause backaction on the measured system, resulting in the well known dephasing and relaxation. In this report, in the context of solid--state qubit measurement by a mesoscopic detector, we show that an alternative backaction known as renormalization is important under some circumstances. This effect is largely overlooked in the theory of quantum measurement.Comment: 12 pages, 4 figure

    Infrared study of the charge-ordered multiferroic LuFe(2)O(4)

    Full text link
    The reflectivity of a large LuFe(2)O(4) single crystal has been measured with the radiation field either perpendicular or parallel to the c axis of its rhombohedral structure, from 10 to 500K, and from 7 to 16000 cm-1. The transition between the two-dimensional and the three-dimensional charge order at T_(CO) = 320 K is found to change dramatically the phonon spectrum in both polarizations. The number of the observed modes above and below T_(CO), according to a factor-group analysis, is in good agreement with a transition from the rhombohedral space group R{bar 3}m to the monoclinic C2/m. In the sub-THz region a peak becomes evident at low temperature, whose origin is discussed in relation with previous experiments.Comment: Physical Review B in pres

    Generalized Dynamic Scaling for Critical Relaxations

    Full text link
    The dynamic relaxation process for the two dimensional Potts model at criticality starting from an initial state with very high temperature and arbitrary magnetization is investigated with Monte Carlo methods. The results show that there exists universal scaling behaviour even in the short-time regime of the dynamic evolution. In order to describe the dependence of the scaling behaviour on the initial magnetization, a critical characteristic function is introduced.Comment: Latex, 8 pages, 3 figures, to appear in Phys. Rev. Let

    A Component Based Heuristic Search Method with Evolutionary Eliminations

    Get PDF
    Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. This paper presents a new component-based approach with evolutionary eliminations, for a nurse scheduling problem arising at a major UK hospital. The main idea behind this technique is to decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then to implement two evolutionary elimination strategies mimicking natural selection and natural mutation process on these components respectively to iteratively deliver better schedules. The worthiness of all components in the schedule has to be continuously demonstrated in order for them to remain there. This demonstration employs an evaluation function which evaluates how well each component contributes towards the final objective. Two elimination steps are then applied: the first elimination eliminates a number of components that are deemed not worthy to stay in the current schedule; the second elimination may also throw out, with a low level of probability, some worthy components. The eliminated components are replenished with new ones using a set of constructive heuristics using local optimality criteria. Computational results using 52 data instances demonstrate the applicability of the proposed approach in solving real-world problems.Comment: 27 pages, 4 figure

    Polarization of the Microwave Background in Defect Models

    Get PDF
    We compute the polarization power spectra for global strings, monopoles, textures and nontopological textures, and compare them to inflationary models. We find that topological defect models predict a significant (1 microK) contribution to magnetic type polarization on degree angular scales, which is produced by the large vector component of the defect source. We also investigate the effect of decoherence on polarization. It leads to a smoothing of acoustic oscillations both in temperature and polarization power spectra and strongly suppresses the cross-correlation between temperature and polarization relative to inflationary models. Presence or absence of magnetic polarization or cross-correlation would be a strong discriminator between the two theories of structure formation and will be testable with the next generation of CMB satellites.Comment: 4 pages, 3 figures, RevTeX fil
    corecore