research

Uhlenbeck-Donaldson compactification for framed sheaves on projective surfaces

Abstract

We construct a compactification MμssM^{\mu ss} of the Uhlenbeck-Donaldson type for the moduli space of slope stable framed bundles. This is a kind of a moduli space of slope semistable framed sheaves. We show that there exists a projective morphism γ ⁣:MssMμss\gamma \colon M^{ss} \to M^{\mu ss}, where MssM^{ss} is the moduli space of S-equivalence classes of Gieseker-semistable framed sheaves. The space MμssM^{\mu ss} has a natural set-theoretic stratification which allows one, via a Hitchin-Kobayashi correspondence, to compare it with the moduli spaces of framed ideal instantons.Comment: 18 pages. v2: a few very minor changes. v3: 27 pages. Several proofs have been considerably expanded, and more explanations have been added. v4: 28 pages. A few minor changes. Final version accepted for publication in Math.

    Similar works