116 research outputs found

    Common denominators in the immunobiology of IgG4 autoimmune diseases: What do glomerulonephritis, pemphigus vulgaris, myasthenia gravis, thrombotic thrombocytopenic purpura and autoimmune encephalitis have in common?

    Get PDF
    IgG4 autoimmune diseases (IgG4-AID) are an emerging group of autoimmune diseases that are caused by pathogenic autoantibodies of the IgG4 subclass. It has only recently been appreciated, that members of this group share relevant immunobiological and therapeutic aspects even though different antigens, tissues and organs are affected: glomerulonephritis (kidney), pemphigus vulgaris (skin), thrombotic thrombocytopenic purpura (hematologic system) muscle-specific kinase (MuSK) in myasthenia gravis (peripheral nervous system) and autoimmune encephalitis (central nervous system) to give some examples. In all these diseases, patients’ IgG4 subclass autoantibodies block protein-protein interactions instead of causing complement mediated tissue injury, patients respond favorably to rituximab and share a genetic predisposition: at least five HLA class II genes have been reported in individual studies to be associated with several different IgG4-AID. This suggests a role for the HLA class II region and specifically the DRβ1 chain for aberrant priming of autoreactive T-cells toward a chronic immune response skewed toward the production of IgG4 subclass autoantibodies. The aim of this review is to provide an update on findings arguing for a common pathogenic mechanism in IgG4-AID in general and to provide hypotheses about the role of distinct HLA haplotypes, T-cells and cytokines in IgG4-AID

    Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates

    Get PDF
    Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. The dialyzer mass transfer-area coefficient (KoA) for urea is an important determinant of urea removal during hemodialysis and is considered to be constant for a given dialyzer. We determined urea clearance for 22 different models of commercial hollow fiber dialyzers (N = ~5/model, total N = 107) in vitro at 37°C for three countercurrent blood (Qb) and dialysate (Qd) flow rate combinations. A standard bicarbonate dialysis solution was used in both the blood and dialysate flow pathways, and clearances were calculated from urea concentrations in the input and output flows on both the blood and dialysate sides. Urea KoA values, calculated from the mean of the blood and dialysate side clearances, varied between 520 and 1230ml/min depending on the dialyzer model, but the effect of blood and dialysate flow rate on urea KoA was similar for each. Urea KoA did not change (690 ± 160 vs. 680 ± 140 ml/min, P = NS) when Qb increased from 306 ± 7 to 459 ± 10ml/min at a nominal Qd of 500ml/min. When Qd increased from 504 ± 6 to 819 ± 8ml/min at a nominal Qb of 450ml/min, however, urea KoA increased (P < 0.001) by 14 ± 7% (range 3 to 33%, depending on the dialyzer model) to 780 ± 150ml/min. These data demonstrate that increasing nominal Qd from 500 to 800ml/min alters the mass transfer characteristics of hollow fiber hemodialyzers and results in a larger increase in urea clearance than predicted assuming a constant KoA

    Relationship between volume status and blood pressure during chronic hemodialysis

    Get PDF
    Relationship between volume status and blood pressure during chronic hemodialysis.BackgroundThe relationship between volume status and blood pressure (BP) in chronic hemodialysis (HD) patients remains incompletely understood. Specifically, the effect of interdialytic fluid accumulation (or intradialytic fluid removal) on BP is controversial.MethodsWe determined the association of the intradialytic decrease in body weight (as an indicator of interdialytic fluid gain) and the intradialytic decrease in plasma volume (as an indicator of postdialysis volume status) with predialysis and postdialysis BP in a cross-sectional analysis of a subset of patients (N = 468) from the Hemodialysis (HEMO) Study. Fifty-five percent of patients were female, 62% were black, 43% were diabetic and 72% were prescribed antihypertensive medications. Dry weight was defined as the postdialysis body weight below which the patient developed symptomatic hypotension or muscle cramps in the absence of edema. The intradialytic decrease in plasma volume was calculated from predialysis and postdialysis total plasma protein concentrations and was expressed as a percentage of the plasma volume at the beginning of HD.ResultsPredialysis systolic and diastolic BP values were 153.1 ± 24.7 (mean ± SD) and 81.7 ± 14.8mm Hg, respectively; postdialysis systolic and diastolic BP values were 136.6 ± 22.7 and 73.9 ± 13.6mm Hg, respectively. As a result of HD, body weight was reduced by 3.1 ± 1.3kg and plasma volume was contracted by 10.1 ± 9.5%. Multiple linear regression analyses showed that eachkg reduction in body weight during HD was associated with a 2.95mm Hg (P = 0.004) and a 1.65mm Hg (P = NS) higher predialysis and postdialysis systolic BP, respectively. In contrast, each 5% greater contraction of plasma volume during HD was associated with a 1.50mm Hg (P = 0.026) and a 2.56mm Hg (P < 0.001) lower predialysis and postdialysis systolic BP, respectively. The effects of intradialytic decreases in body weight and plasma volume were greater on systolic BP than on diastolic BP.ConclusionsHD treatment generally reduces BP, and these reductions in BP are associated with intradialytic decreases in both body weight and plasma volume. The absolute predialysis and postdialysis BP levels are influenced differently by acute intradialytic decreases in body weight and acute intradialytic decreases in plasma volume; these parameters provide different information regarding volume status and may be dissociated from each other. Therefore, evaluation of volume status in chronic HD patients requires, at minimum, assessments of both interdialytic fluid accumulation (or the intradialytic decrease in body weight) and postdialysis volume overload

    MOG-IgG in primary and secondary chronic progressive multiple sclerosis: a multicenter study of 200 patients and review of the literature

    Get PDF
    Background: Antibodies to human full-length myelin oligodendrocyte glycoprotein (MOG-IgG) as detected by new-generation cell-based assays have recently been described in patients presenting with acute demyelinating disease of the central nervous system, including patients previously diagnosed with multiple sclerosis (MS). However, only limited data are available on the relevance of MOG-IgG testing in patients with chronic progressive demyelinating disease. It is unclear if patients with primary progressive MS (PPMS) or secondary progressive MS (SPMS) should routinely be tested for MOG-IgG. Objective: To evaluate the frequency of MOG-IgG among patients classified as having PPMS or SPMS based on current diagnostic criteria. Methods: For this purpose, we retrospectively tested serum samples of 200 patients with PPMS or SPMS for MOG-IgG using cell-based assays. In addition, we performed a review of the entire English language literature on MOG-IgG published between 2011 and 2017. Results: None of 139 PPMS and 61 SPMS patients tested was positive for MOG-IgG. Based on a review of the literature, we identified 35 further MOG-IgG tests in patients with PPMS and 55 in patients with SPMS; the only reportedly positive sample was positive just at threshold level and was tested in a non-IgG-specific assay. In total, a single borderline positive result was observed among 290 tests. Conclusion: Our data suggest that MOG-IgG is absent or extremely rare among patients with PPMS or SPMS. Routine screening of patients with typical PPMS/SPMS for MOG-IgG seems not to be justified

    Absorption characteristics of dextrans with different molecular weights from the liver surface membrane in rats: implications for targeting to the liver

    Get PDF
    We examined the importance of molecular weight on the absorption from the liver surface in rats using fluorescein isothiocyanate-dextrans (FDs) with molecular weights of 4,400 (FD-4), 9,300 (FD-10), 40,500 (FD-40) or 69,000 (FD-70). After application of FDs (5 mg) to the rat liver surface employing a cylindrical glass cell (i.d. 9 mm), each FD appeared gradually in the plasma, and the in vivo behavior was explained by two-compartment model with first-order absorption. The absorption ratios of FDs from the rat liver surface at 6 h, calculated from the amount recovered from the glass cell, decreased with an increase in the molecular weight (44.5% for FD-4, 29.3% for FD-10, 5.1% for FD-40 and 2.2% for FD-70). A linear relationship was observed between the absorption rate constant and the reciprocal value with square root of molecular weight of the model compounds. The limit of absorption from the rat liver surface was extrapolated to be at a molecular weight of 70,000. Furthermore, absorbed FDs were accumulated in the liver, as high liver/plasma concentration ratio as compared with that of i.v. administration. We clarified the molecular weight dependence of drug absorption from the liver surface in rats. Moreover, the liver surface application appeared to be a promising route with enhancing the efficacy of drug targeting to the liver.without figuresグラフな

    Interplay between SIN3A and STAT3 Mediates Chromatin Conformational Changes and GFAP Expression during Cellular Differentiation

    Get PDF
    BACKGROUND: Neurons and astrocytes are generated from common neural precursors, yet neurogenesis precedes astrocyte formation during embryogenesis. The mechanisms of neural development underlying suppression and de-suppression of differentiation-related genes for cell fate specifications are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: By using an in vitro system in which NTera-2 cells were induced to differentiate into an astrocyte-like lineage, we revealed a novel role for Sin3A in maintaining the suppression of GFAP in NTera-2 cells. Sin3A coupled with MeCP2 bound to the GFAP promoter and their occupancies were correlated with repression of GFAP transcription. The repression by Sin3A and MeCP2 may be an essential mechanism underlying the inhibition of cell differentiation. Upon commitment toward an astrocyte-like lineage, Sin3A- MeCP2 departed from the promoter and activated STAT3 simultaneously bound to the promoter and exon 1 of GFAP; meanwhile, olig2 was exported from nuclei to the cytoplasm. This suggested that a three-dimensional or higher-order structure was provoked by STAT3 binding between the promoter and proximal coding regions. STAT3 then recruited CBP/p300 to exon 1 and targeted the promoter for histone H3K9 and H3K14 acetylation. The CBP/p300-mediated histone modification further facilitates chromatin remodeling, thereby enhancing H3K4 trimethylation and recruitment of RNA polymerase II to activate GFAP gene transcription. CONCLUSIONS/SIGNIFICANCE: These results provide evidence that exchange of repressor and activator complexes and epigenetic modifications are critical strategies for cellular differentiation and lineage-specific gene expression

    Motor, cognitive and mobility deficits in 1000 geriatric patients : protocol of a quantitative observational study before and after routine clinical geriatric treatment – the ComOn-study

    Get PDF
    © The Author(s). 2020 Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: Motor and cognitive deficits and consequently mobility problems are common in geriatric patients. The currently available methods for diagnosis and for the evaluation of treatment in this vulnerable cohort are limited. The aims of the ComOn (COgnitive and Motor interactions in the Older populatioN) study are (i) to define quantitative markers with clinical relevance for motor and cognitive deficits, (ii) to investigate the interaction between both motor and cognitive deficits and (iii) to assess health status as well as treatment outcome of 1000 geriatric inpatients in hospitals of Kiel (Germany), Brescia (Italy), Porto (Portugal), Curitiba (Brazil) and Bochum (Germany). Methods: This is a prospective, explorative observational multi-center study. In addition to the comprehensive geriatric assessment, quantitative measures of reduced mobility and motor and cognitive deficits are performed before and after a two week's inpatient stay. Components of the assessment are mobile technology-based assessments of gait, balance and transfer performance, neuropsychological tests, frailty, sarcopenia, autonomic dysfunction and sensation, and questionnaires to assess behavioral deficits, activities of daily living, quality of life, fear of falling and dysphagia. Structural MRI and an unsupervised 24/7 home assessment of mobility are performed in a subgroup of participants. The study will also investigate the minimal clinically relevant change of the investigated parameters. Discussion: This study will help form a better understanding of symptoms and their complex interactions and treatment effects in a large geriatric cohort.info:eu-repo/semantics/publishedVersio
    corecore