17 research outputs found

    A microarray-based system for the simultaneous analysis of single nucleotide polymorphisms in human genes involved in the metabolism of anti-malarial drugs

    Get PDF
    Background: In order to provide a cost-effective tool to analyse pharmacogenetic markers in malaria treatment, DNA microarray technology was compared with sequencing of polymerase chain reaction (PCR) fragments to detect single nucleotide polymorphisms (SNPs) in a larger number of samples. Methods: The microarray was developed to affordably generate SNP data of genes encoding the human cytochrome P450 enzyme family (CYP) and N-acetyltransferase-2 (NAT2) involved in antimalarial drug metabolisms and with known polymorphisms, i.e. CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, and NAT2. Results: For some SNPs, i.e. CYP2A6*2, CYP2B6*5, CYP2C8*3, CYP2C9*3/*5, CYP2C19*3, CYP2D6*4 and NAT2*6/*7/*14, agreement between both techniques ranged from substantial to almost perfect (kappa index between 0.61 and 1.00), whilst for other SNPs a large variability from slight to substantial agreement (kappa index between 0.39 and 1.00) was found, e. g. CYP2D6*17 (2850C>T), CYP3A4*1B and CYP3A5*3. Conclusion: The major limit of the microarray technology for this purpose was lack of robustness and with a large number of missing data or with incorrect specificity

    Multiple Introductions of Mycobacterium tuberculosis Lineage 2–Beijing Into Africa Over Centuries

    Get PDF
    The Lineage 2–Beijing (L2–Beijing) sub-lineage of Mycobacterium tuberculosis has received much attention due to its high virulence, fast disease progression, and association with antibiotic resistance. Despite several reports of the recent emergence of L2–Beijing in Africa, no study has investigated the evolutionary history of this sub-lineage on the continent. In this study, we used whole genome sequences of 781 L2 clinical strains from 14 geographical regions globally distributed to investigate the origins and onward spread of this lineage in Africa. Our results reveal multiple introductions of L2–Beijing into Africa linked to independent bacterial populations from East- and Southeast Asia. Bayesian analyses further indicate that these introductions occurred during the past 300 years, with most of these events pre-dating the antibiotic era. Hence, the success of L2–Beijing in Africa is most likely due to its hypervirulence and high transmissibility rather than drug resistance

    Genetic diversity of Mycobacterium tuberculosis strains circulating in Botswana

    Get PDF
    Molecular typing of Mycobacterium tuberculosis (M.tb) isolates can inform Tuberculosis (TB) control programs on the relative proportion of transmission driving the TB epidemic. There is limited data on the M. tb genotypes that are circulating in Botswana. The aim of this study was to generate baseline data on the genetic diversity of M.tb isolates circulating in the country.; A total of 461 M.tb isolates received at the Botswana National Tuberculosis Reference Laboratory between March 2012 and October 2013 were included in this study. Drug susceptibility testing was conducted using the BD BACTEC MGIT 960 System. M.tb strains were genotyped using spoligotyping and spoligotype patterns were compared with existing patterns in the SITVIT Web database. A subset of drug resistant isolates which formed spoligo clusters (n = 65) was additionally genotyped with 12-loci MIRU. Factors associated with drug resistance and clustering were evaluated using logistic regression.; Of the 461 isolates genotyped, 458 showed 108 distinct spoligotype patterns. The predominant M.tb lineages were Lineage 4 (81.9%), Lineage 2 (9%) and Lineage 1 (7.2%). The predominant spoligotype families within Lineage 4 were LAM (33%), S (14%), T (16%), X (16%). Three hundred and ninety-two (86%) isolates could be grouped into 44 clusters (2-46 isolates per cluster); giving a clustering rate of 76%. We identified 173 (37.8%) drug resistant isolates, 48 (10.5%) of these were multi-drug resistant. MIRU typing of the drug resistant isolates allowed grouping of 46 isolates into 14 clusters, giving a clustering rate of 49.2%. There was no association between age, sex, treatment category, region and clustering.; This study highlights the complexity of the TB epidemic in Botswana with multiple strains contributing to disease and provides baseline data on the population structure of M.tb strains in Botswana

    Detection of Second Line Drug Resistance among Drug Resistant Mycobacterium Tuberculosis Isolates in Botswana

    Get PDF
    The emergence and transmission of multidrug resistant (MDR) and extensively drug resistant (XDR); Mycobacterium tuberculosis (M.tb); strains is a threat to global tuberculosis (TB) control. The early detection of drug resistance is critical for patient management. The aim of this study was to determine the proportion of isolates with additional second-line resistance among rifampicin and isoniazid resistant and MDR-TB isolates. A total of 66; M.tb; isolates received at the National Tuberculosis Reference Laboratory between March 2012 and October 2013 with resistance to isoniazid, rifampicin or both were analyzed in this study. The genotypes of the; M.tb; isolates were determined by spoligotyping and second-line drug susceptibility testing was done using the Hain Genotype MTBDR; sl; line probe assay version 2.0. The treatment outcomes were defined according to the Botswana national and World Health Organization (WHO) guidelines. Of the 57 isolates analyzed, 33 (58%) were MDR-TB, 4 (7%) were additionally resistant to flouroquinolones and 3 (5%) were resistant to both fluoroquinolones and second-line injectable drugs. The most common fluoroquinolone resistance-conferring mutation detected was; gyrA; A90V. All XDR-TB cases remained smear or culture positive throughout the treatment. Our study findings indicate the importance of monitoring drug resistant TB cases to ensure rapid detection of second-line drug resistance

    Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages

    Get PDF
    Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.We thank S. Lecher, S. Li and J. Zallet for technical support. Calculations were performed at the sciCORE scientific computing core facility at the University of Basel. This work was supported by the Swiss National Science Foundation (grants 310030_166687 (S.G.) and 320030_153442 (M.E.) and Swiss HIV Cohort Study grant 740 to L.F.), the European Research Council (309540-EVODRTB to S.G.), TB-PAN-NET (FP7-223681 to S.N.), PathoNgenTrace projects (FP7-278864-2 to S.N.), SystemsX.ch (S.G.), the German Center for Infection Research (DZIF; S.N.), the Novartis Foundation (S.G.), the Natural Science Foundation of China (91631301 to Q.G.), and the National Institute of Allergy and Infectious Diseases (5U01-AI069924-05) of the US National Institutes of Health (M.E.)

    Tuberculosis in Papua New Guinea : from yesterday until today

    No full text
    Little is known about the situation of tuberculosis in Papua New Guinea despite its high TB burden, emerging drug resistance and rising HIV co-infection. This review gives an overview on the current situation of TB in PNG and identifies knowledge gaps that should urgently be addressed in the future
    corecore