52,730 research outputs found

    The influence of laser hardening on wear in the valve and valve seat contact

    No full text
    In internal combustion engines it is important to manage the wear in the valve and valve seat contact in order to minimise emissions and maximise economy. Traditionally wear in this contact has been controlled by the use of a valve seat insert and the careful selection of materials for both the valve and the insert. More recently, due to the increasing demands for both performance and cost, alternative methods of controlling the wear, and the resulting valve recession, have been sought. Using the heating effect of a laser to induce localised phase transformations, to increase hardness and wear resistance, in materials has been used since the 1970s, however it is only in recent years that it has been able to compete with more established surface treatment techniques, particularly in terms of cost, as new laser hardware has been developed. In this work, a laser has been used to treat the valve seat area of a cast iron cylinder head. In order to optimise the laser parameters for use on the head, preliminary tests were carried out to investigate the fundamental wear characteristics of untreated cast iron and also cast iron with a range of laser treatments. Previous work has identified the predominant wear mechanism in the valve and valve seat contact as impact on valve closure. Two bespoke test machines, one for testing basic specimens and one for testing components, were used to identify the laser parameters most likely to yield acceptable results when applied to a cylinder head to be used in a fired dynamometer test. © 2009 Elsevier B.V. All rights reserved

    Preliminary Investigation of Cyclic De-Icing of an Airfoil Using an External Electric Heater

    Get PDF
    An investigation was conducted in the NACA Lewis icing research tunnel to determine the characteristics and requirements of cyclic deicing of a 65,2-216 airfoil by use of an external electric heater. The present investigation was limited to an airspeed of 175 miles per hour. Data are presented to show the effects of variations in heat-on and heat-off periods, ambient air temperature, liquid-water content, angle of attack, and. heating distribution on the requirements for cyclic deicing. The external heat flow at various icing and heating conditions is also presented. A continuously heated parting strip at the airfoil leading edge was found necessary for quick, complete, and consistent ice removal. The cyclic power requirements were found to be primarily a function of the datum temperature and heat-on time, with the other operating and meteorological variables having a second-order effect. Short heat-on periods and high power densities resulted in the most efficient ice removal, the minimum energy input, and the minimum runback ice formations. The optimum chordwise heating distribution pattern was found to consist of a uniform distribution of cycled power density in the impingement region. Downstream of the impingement region the power density decreased to the limits of heating which, for the conditions investigated, extended from 5.7 percent chord on the upper surface of the airfoil to 8.9 percent chord on the lower surface. Ice removal did not take place at a heater surface temperature of 32 F; surface temperatures of approximately 50 to 100 F were required to effect removal. Better de-icing performance and greater energy savings would be possible with a heater having a higher thermal efficiency

    A theory of linear estimation

    Get PDF
    Theory of linear estimation and applicability to problems of smoothing, filtering, extrapolation, and nonlinear estimatio
    • 

    corecore