44,843 research outputs found

    Realising formal groups

    Full text link
    We show that a large class of formal groups can be realised functorially by even periodic ring spectra. The main advance is in the construction of morphisms, not of objects.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol3/agt-3-8.abs.htm

    Complex cobordism of involutions

    Full text link
    We give a simple and explicit presentation of the Z/2-equivariant complex cobordism ring.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol5/paper11.abs.htm

    Laser-heated thruster

    Get PDF
    The development of a computer program for the design of the thrust chamber for a CW laser heated thruster was examined. Hydrodgen was employed as the propellant gas and high temperature absorber. The laser absorption coefficient of the mixture/laser radiation combination is given in temperature and species densities. Radiative and absorptive properties are given to determine radiation from such gas mixtures. A computer code for calculating the axisymmetric channel flow of a gas mixture in chemical equilibrium, and laser energy absorption and convective and radiative heating is described. It is concluded that: (1) small amounts of cesium seed substantially increase the absorption coefficient of hydrogen; (2) cesium is a strong radiator and contributes greatly to radiation of cesium seeded hydrogen; (3) water vapor is a poor absorber; and (4) for 5.3mcm radiation, both H2O/CO and NO/CO seeded hydrogen mixtures are good absorbers

    Continued development of doped-germanium photoconductors for astronomical observations at wavelengths from 30 to 120 micrometers

    Get PDF
    The development of doped-germanium detectors which have optimized performance in the 30- to 120-mu m wavelength range and are capable of achieving the objectives of the infrared astronomical satellite (IRAS) space mission is discussed. Topics covered include the growth and evaluation of Ge:Ga and Ge:Be crystals, procedures for the fabrication and testing of detectors, irradiance calculations, detector responsivity, and resistance measurements through MOSFET. Test data are presented in graphs and charts

    Elastic precursor of the transformation from glycolipid-nanotube to -vesicle

    Full text link
    By the combination of optical tweezer manipulation and digital video microscopy, the flexural rigidity of single glycolipid "nano" tubes has been measured below the transition temperature at which the lipid tubules are transformed into vesicles. Consequently, we have found a clear reduction of the rigidity obviously before the transition as temperature increasing. Further experiments of infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) have suggested a microscopic change of the tube walls, synchronizing with the precursory softening of the nanotubes.Comment: 9 pages, 6 figure

    QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments

    Get PDF
    QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments

    Pattern formation by lateral inhibition with feedback: a mathematical model of Delta-Notch intercellular signalling

    Get PDF
    In many developing tissues, adjacent cells diverge in character so as to create a fine-grained pattern of cells in contrasting states of differentiation. It has been proposed that such patterns can be generated through lateral inhibition—a type cells–cell interaction whereby a cell that adopts a particular fate inhibits its immediate neighbours from doing likewise. Lateral inhibition is well documented in flies, worms and vertebrates. In all of these organisms, the transmembrane proteins Notch and Delta (or their homologues) have been identified as mediators of the interaction—Notch as receptor, Delta as its ligand on adjacent cells. However, it is not clear under precisely what conditions the Delta-Notch mechanism of lateral inhibition can generate the observed types of pattern, or indeed whether this mechanism is capable of generating such patterns by itself. Here we construct and analyse a simple and general mathematical model of such contact-mediated lateral inhibition. In accordance with experimental data, the model postulates that receipt of inhibition (i.e. activation of Notch) diminishes the ability to deliver inhibition (i.e. to produce active Delta). This gives rise to a feedback loop that can amplify differences between adjacent cells. We investigate the pattern-forming potential and temporal behavior of this model both analytically and through numerical simulation. Inhomogeneities are self-amplifying and develop without need of any other machinery, provided the feedback is sufficiently strong. For a wide range of initial and boundary conditions, the model generates fine-grained patterns similar to those observed in living systems

    Solar energy conversion

    Get PDF
    If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience

    The perimeter of large planar Voronoi cells: a double-stranded random walk

    Full text link
    Let p_np\_n be the probability for a planar Poisson-Voronoi cell to have exactly nn sides. We construct the asymptotic expansion of logp_n\log p\_n up to terms that vanish as nn\to\infty. We show that {\it two independent biased random walks} executed by the polar angle determine the trajectory of the cell perimeter. We find the limit distribution of (i) the angle between two successive vertex vectors, and (ii) the one between two successive perimeter segments. We obtain the probability law for the perimeter's long wavelength deviations from circularity. We prove Lewis' law and show that it has coefficient 1/4.Comment: Slightly extended version; journal reference adde
    corecore