47,594 research outputs found
The Dark Matter Radial Profile in the Core of the Relaxed Cluster A2589
We present an analysis of a Chandra--ACIS observation of the galaxy cluster
A2589 to constrain the radial distribution of the total gravitating matter and
the dark matter in the core of the cluster. A2589 is especially well-suited for
this analysis because the hot gas in its core region (r < ~0.1 Rvir) is
undisturbed by interactions with a central radio source. From the largest
radius probed (r=0.07 Rvir) down to r ~0.02 Rvir dark matter dominates the
gravitating mass. Over this region the radial profiles of the gravitating and
dark matter are fitted well by the NFW and Hernquist profiles predicted by CDM.
The density profiles are also described well by power laws, rho ~r^{-alpha},
where alpha=1.37 +/- 0.14 for the gravitating matter and alpha=1.35 +/- 0.21
for the dark matter. These values are consistent with profiles of CDM halos but
are significantly larger than alpha ~0.5 found in LSB galaxies and expected
from self-interacting dark matter models.Comment: 10 pages, 6 figures, To Appear in The Astrophysical Journal, March 20
issue, a few very minor changes to match copyedited versio
Predicted efficiency of Si wire array solar cells
Solar cells based on arrays of CVD-grown Si nano- or micro-wires have attracted interest as potentially low-cost alternatives to conventional wafer-based Si photovoltaics [1-6], and single-wire solar cells have been reported with efficiencies of up to 3.4% [7]. We recently presented device physics simulations which predicted efficiencies exceeding 17%, based on experimentally observed diffusion lengths within our wires [8]. However, this model did not take into account the optical properties of a wire array device - in particular the inherently low packing fraction of wires within CVD-grown wire arrays, which might limit their ability to fully absorb incident sunlight. For this reason, we have combined a device physics model of Si wire solar cells with FDTD simulations of light absorption within wire arrays to investigate the potential photovoltaic efficiency of this cell geometry. We have found that even a sparsely packed array (14%) is expected to absorb moderate (66%) amounts of above-bandgap solar energy, yielding a simulated photovoltaic efficiency of 14.5%. Because the wire array comprises such a small volume of Si, the observed absorption represents an effective optical concentration, which enables greater operating voltages than previously predicted for Si wire array solar cells
Static and dynamic properties of crystalline phases of two-dimensional electrons in a strong magnetic field
We study the cohesive energy and elastic properties as well as normal modes
of the Wigner and bubble crystals of the two-dimensional electron system (2DES)
in higher Landau levels. Using a simple Hartree-Fock approach, we show that the
shear moduli ('s) of these electronic crystals show a non-monotonic
behavior as a function of the partial filling factor at any given
Landau level, with increasing for small values of , before
reaching a maximum at some intermediate filling factor , and
monotonically decreasing for . We also go beyond previous
treatments, and study how the phase diagram and elastic properties of electron
solids are changed by the effects of screening by electrons in lower Landau
levels, and by a finite thickness of the experimental sample. The implications
of these results on microwave resonance experiments are briefly discussed.Comment: Discussion updated - 16 pages, 10 figures; version accepted for
publication in Phys. Rev.
Reliability of Lower Limb Motor Evoked Potentials in Stroke and Healthy Populations: How Many Responses Are Needed?
Objective
To determine the intra- and inter-session reliability of motor evoked potential (MEP) size parameters in the lower limb of patients with stroke, focussing on the number of MEPs collected and the method of measuring MEP size.
Methods
Transcranial magnetic stimulation was used to elicit MEPs in the soleus muscle of patients with stroke (n = 13) and age-matched healthy participants (n = 13) during low level muscle activation. Two sets of 10 responses were collected in the first session and a further 10 responses collected in a second session held 7 days later. Four MEP size measurements were made using 4, 6, 8, or all 10 of the MEPs collected. Intra- and inter-session reliability was examined using intraclass correlation coefficients (ICC) and typical percentage error.
Results
Intrasession ICC statistics using 6 or more MEPs were >0.85 in the stroke group but intersession values were all <0.5. Reliability was best when measuring parameters from individual MEPs rather than averaged responses.
Conclusions
Reliability of intrasession MEP size is excellent in the lower limb of patients with stroke using as few as 6 MEPs but intersession reliability is poor.
Significance
Comparing MEP size measures across two or more sessions is questionable in the lower limb of patients with stroke
QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments
QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments
Asynchronous displays for multi-UV search tasks
Synchronous video has long been the preferred mode for controlling remote robots with other modes such as asynchronous control only used when unavoidable as in the case of interplanetary robotics. We identify two basic problems for controlling multiple robots using synchronous displays: operator overload and information fusion. Synchronous displays from multiple robots can easily overwhelm an operator who must search video for targets. If targets are plentiful, the operator will likely miss targets that enter and leave unattended views while dealing with others that were noticed. The related fusion problem arises because robots' multiple fields of view may overlap forcing the operator to reconcile different views from different perspectives and form an awareness of the environment by "piecing them together". We have conducted a series of experiments investigating the suitability of asynchronous displays for multi-UV search. Our first experiments involved static panoramas in which operators selected locations at which robots halted and panned their camera to capture a record of what could be seen from that location. A subsequent experiment investigated the hypothesis that the relative performance of the panoramic display would improve as the number of robots was increased causing greater overload and fusion problems. In a subsequent Image Queue system we used automated path planning and also automated the selection of imagery for presentation by choosing a greedy selection of non-overlapping views. A fourth set of experiments used the SUAVE display, an asynchronous variant of the picture-in-picture technique for video from multiple UAVs. The panoramic displays which addressed only the overload problem led to performance similar to synchronous video while the Image Queue and SUAVE displays which addressed fusion as well led to improved performance on a number of measures. In this paper we will review our experiences in designing and testing asynchronous displays and discuss challenges to their use including tracking dynamic targets. © 2012 by the American Institute of Aeronautics and Astronautics, Inc
NERVA irradiation program, GTR test 21. Volume 4 - Effect of radiation on structural materials tested at cryogenic and elevated temperatures
Effect of radiation on structural materials for NERVA engine tested at cryogenic and elevated temperatures - Vol.
Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States
Several lineages of influenza A viruses (IAV) currently circulate in North American pigs. Genetic diversity is further increased by transmission of IAV between swine and humans and subsequent evolution. Here, we characterized the genetic and antigenic evolution of contemporary swine H1N1 and H1N2 viruses representing clusters H1-α (1A.1), H1-β (1A.2), H1pdm (1A.3.3.2), H1-γ (1A.3.3.3), H1-δ1 (1B.2.2), and H1-δ2 (1B.2.1) currently circulating in pigs in the United States. The δ1-viruses diversified into two new genetic clades, H1-δ1a (1B.2.2.1) and H1-δ1b (1B.2.2.2), which were also antigenically distinct from the earlier H1-δ1-viruses. Further characterization revealed that a few key amino acid changes were associated with antigenic divergence in these groups. The continued genetic and antigenic evolution of contemporary H1 viruses might lead to loss of vaccine cross-protection that could lead to significant economic impact to the swine industry, and represents a challenge to public health initiatives that attempt to minimize swine-to-human IAV transmission
- …