2,960 research outputs found
Development of a simple information pump.
The Information Pump (IP) is a methodology that aims to counter the problems arising from traditional subjective product data collection. The IP is a game theory based process that aims to maximise information extracted from a panel of subjects, while maintaining their interest in the process through a continuous panelist scoring method. The challenge with implementing this arises from the difficulty in executing the 'game'. In its original format, there is an assumption that the game is played with each player using their own PC to interact with the process. While this in theory allows information and scores to flow in a controlled manner between the players, it actually provides a major barrier to the wider adoption of the IP method. This barrier is two-fold: it is costly and complex, and it is not a natural manner for exchanging information. The core objective is to develop a low cost version of the IP method. This will use the game theory approach to maintain interest among participants and maximise information extraction, but remove the need for each participant to have their own PC interface to the game. This will require replacing both the inter-player communication method and the score keeping/reporting
Comparison of immunoassay and real-time PCR methods for the detection of Jembrana disease virus infection in Bali cattle
A sensitive diagnostic assay for the detection of infections with the bovine lentivirus Jembrana disease virus (JDV) is required in Indonesia to control the spread of Jembrana disease. Immunoassays are used routinely but are compromised by cross-reactive epitopes in the capsid (CA) protein of JDV and the genetically related bovine immunodeficiency virus (BIV). JDV gag-specific primers were tested in a real-time PCR assay to detect proviral DNA in peripheral blood mononuclear cells from 165 cattle from the Tabanan district of Bali. JDV-specific amplicons were detected in 9% of the cattle and only 33% of the real-time PCR positive cattle were seropositive. The delayed seroconversion that occurs after infection with JDV could explain the low concordance between these assays but other factors may be responsible. BIV proviral DNA was not detected in any of the PBMC DNA samples. A high concordance value of 98.6% was found between the JDV plasma-derived antigen Western blot and the JDV p26-his recombinant protein ELISA. Only 21% of the seropositive cattle had detectable levels of proviral DNA suggesting that the proviral load in recovered cattle is low. A combination of real-time PCR and JDV p26-his ELISA is recommended for the detection of infection with JDV in Indonesia
The Environment as an Argument
Context-awareness as defined in the setting of Ubiquitous Computing [3] is all about expressing the dependency of a specific computation upon some implicit piece of information. The manipulation and expression of such dependencies may thus be neatly encapsulated in a language where computations are first-class values. Perhaps surprisingly however, context-aware programming has not been explored in a functional setting, where first-class computations and higher-order functions are commonplace. In this paper we present an embedded domain-specific language (EDSL) for constructing context-aware applications in the functional programming language Haskell. © 2012 Springer-Verlag
Exploring the contribution of motivation and experience in the post-pubescent own-gender bias in face recognition
The own-gender bias in face recognition has been hypothesised to be the result of extensive experience with own-gender faces, coupled with a motivation to process own-group faces more deeply than other-group faces. We test the effect of experience and motivation in four experiments employing standard old/new recognition paradigms. In Experiment 1, no own-gender recognition bias was observed following an attractiveness-rating encoding task regardless of school type (single- or mixed-sex). Experiment 2, which used a distinctiveness-rating encoding task, did find a significant own-gender bias for all groups of participants. Experiment 3 on adults found that the own-gender bias was not affected by self-reported contact with the other-gender, but the encoding task did moderate the size of the bias. Experiment 4 revealed that participants with an own-gender sexual orientation showed a stronger own-gender bias. These results indicate that motivational factors influence the own-gender bias whereas no evidence was found for perceptual experience
Usability Assessment of a Multimodal Visual-Haptic Framework for Chemistry Education
In this work, we assess the usability of a virtual environment where the force of interaction between the electrostatic field around the molecule and a charge associated to the proxy of a haptic device can be felt. Feedbacks to user are provided in a multimodal visual and haptic way, and auxiliary information are also rendered
Unitary relation between a harmonic oscillator of time-dependent frequency and a simple harmonic oscillator with and without an inverse-square potential
The unitary operator which transforms a harmonic oscillator system of
time-dependent frequency into that of a simple harmonic oscillator of different
time-scale is found, with and without an inverse-square potential. It is shown
that for both cases, this operator can be used in finding complete sets of wave
functions of a generalized harmonic oscillator system from the well-known sets
of the simple harmonic oscillator. Exact invariants of the time-dependent
systems can also be obtained from the constant Hamiltonians of unit mass and
frequency by making use of this unitary transformation. The geometric phases
for the wave functions of a generalized harmonic oscillator with an
inverse-square potential are given.Comment: Phys. Rev. A (Brief Report), in pres
CMBfit: Rapid WMAP likelihood calculations with normal parameters
We present a method for ultra-fast confrontation of the WMAP cosmic microwave
background observations with theoretical models, implemented as a publicly
available software package called CMBfit, useful for anyone wishing to measure
cosmological parameters by combining WMAP with other observations. The method
takes advantage of the underlying physics by transforming into a set of
parameters where the WMAP likelihood surface is accurately fit by the
exponential of a quartic or sextic polynomial. Building on previous physics
based approximations by Hu et.al., Kosowsky et.al. and Chu et.al., it combines
their speed with precision cosmology grade accuracy. A Fortran code for
computing the WMAP likelihood for a given set of parameters is provided,
pre-calibrated against CMBfast, accurate to Delta lnL ~ 0.05 over the entire
2sigma region of the parameter space for 6 parameter ``vanilla'' Lambda CDM
models. We also provide 7-parameter fits including spatial curvature,
gravitational waves and a running spectral index.Comment: 14 pages, 8 figures, References added, accepted for publication in
Phys.Rev.D., a Fortran code can be downloaded from
http://space.mit.edu/home/tegmark/cmbfit
Dynamical Dark Energy model parameters with or without massive neutrinos
We use WMAP5 and other cosmological data to constrain model parameters in
quintessence cosmologies, focusing also on their shift when we allow for
non-vanishing neutrino masses. The Ratra-Peebles (RP) and SUGRA potentials are
used here, as examples of slowly or fastly varying state parameter w(a). Both
potentials depend on an energy scale \Lambda. Here we confirm the results of
previous analysis with WMAP3 data on the upper limits on \Lambda, which turn
out to be rather small (down to ~10^{-9} in RP cosmologies and ~10^{-5} for
SUGRA). Our constraints on \Lambda are not heavily affected by the inclusion of
neutrino mass as a free parameter. On the contrary, when the neutrino mass
degree of freedom is opened, significant shifts in the best-fit values of other
parameters occur.Comment: 9 pages, 3 figures, submitted to JCA
Counting matrices over finite fields with support on skew Young diagrams and complements of Rothe diagrams
We consider the problem of finding the number of matrices over a finite field
with a certain rank and with support that avoids a subset of the entries. These
matrices are a q-analogue of permutations with restricted positions (i.e., rook
placements). For general sets of entries these numbers of matrices are not
polynomials in q (Stembridge 98); however, when the set of entries is a Young
diagram, the numbers, up to a power of q-1, are polynomials with nonnegative
coefficients (Haglund 98).
In this paper, we give a number of conditions under which these numbers are
polynomials in q, or even polynomials with nonnegative integer coefficients. We
extend Haglund's result to complements of skew Young diagrams, and we apply
this result to the case when the set of entries is the Rothe diagram of a
permutation. In particular, we give a necessary and sufficient condition on the
permutation for its Rothe diagram to be the complement of a skew Young diagram
up to rearrangement of rows and columns. We end by giving conjectures
connecting invertible matrices whose support avoids a Rothe diagram and
Poincar\'e polynomials of the strong Bruhat order.Comment: 24 pages, 9 figures, 1 tabl
Physical tests for Random Numbers in Simulations
We propose three physical tests to measure correlations in random numbers
used in Monte Carlo simulations. The first test uses autocorrelation times of
certain physical quantities when the Ising model is simulated with the Wolff
algorithm. The second test is based on random walks, and the third on blocks of
n successive numbers. We apply the tests to show that recent errors in high
precision simulations using generalized feedback shift register algorithms are
due to short range correlations in random number sequences. We also determine
the length of these correlations.Comment: 16 pages, Post Script file, HU-TFT-94-
- …
