65,318 research outputs found
Recommended from our members
The Human Rights Act 1998, section 12 - press freedom over privacy?
Whether drafting of s.12 of 1998 Act resolves potential conflict between "right to private life", Art.8 of ECHR, and right to freedom of expression, Art.10 of ECHR, by favouring press freedom over individual rights
Is One Hyperparameter Optimizer Enough?
Hyperparameter tuning is the black art of automatically finding a good
combination of control parameters for a data miner. While widely applied in
empirical Software Engineering, there has not been much discussion on which
hyperparameter tuner is best for software analytics. To address this gap in the
literature, this paper applied a range of hyperparameter optimizers (grid
search, random search, differential evolution, and Bayesian optimization) to
defect prediction problem. Surprisingly, no hyperparameter optimizer was
observed to be `best' and, for one of the two evaluation measures studied here
(F-measure), hyperparameter optimization, in 50\% cases, was no better than
using default configurations.
We conclude that hyperparameter optimization is more nuanced than previously
believed. While such optimization can certainly lead to large improvements in
the performance of classifiers used in software analytics, it remains to be
seen which specific optimizers should be applied to a new dataset.Comment: 7 pages, 2 columns, accepted for SWAN1
Sustained load crack growth design data for Ti-6Al-4V titanium alloy tanks containing hydrazine
Sustained load crack growth data for Ti-6Al-4V titanium alloy in hydrazine per MIL-P-26536 and refined hydrazine are presented. Fracture mechanics data on crack growth thresholds for heat-treated forgings, aged and unaged welds, and aged and unaged heat-affected zones are reported. Fracture mechanics design curves of crack growth threshold stress intensity versus temperature are generated from 40 to 71 C
Properties of non-stoichiometric metallic carbides final report
Nonstoichiometric transition metal carbide propertie
The effect of wall cooling on a compressible turbulent boundary layer
Experimental results are presented for two turbulent boundary-layer experiments conducted at a free-stream Mach number of 4 with wall cooling. The first experiment examines a constant-temperature cold-wall boundary layer subjected to adverse and favourable pressure gradients. It is shown that the boundary-layer data display good agreement with Coles’ general composite boundary-layer profile using Van Driest's transformation. Further, the pressure-gradient parameter β_K found in previous studies to correlate adiabatic high-speed data with low-speed data also correlates the present cooled-wall high-speed data. The second experiment treats the response of a constant-pressure high-speed boundary layer to a near step change in wall temperature. It is found that the growth rate of the thermal boundary layer within the existing turbulent boundary layer varies considerably depending upon the direction of the wall temperature change. For the case of an initially cooled boundary layer flowing onto a wall near the recovery temperature, it is found that δ_T ~ x whereas the case of an adiabatic boundary layer flowing onto a cooled wall gives δ_T ~ x^½. The apparent origin of the thermal boundary layer also changes considerably, which is accounted for by the variation in sublayer thicknesses and growth rates within the sublayer
An experiment on the adiabatic compressible turbulent boundary layer in adverse and favourable pressure gradients
A wind-tunnel model was developed to study the two-dimensional turbulent boundary layer in adverse and favourable pressure gradients with out the effects of streamwise surface curvature. Experiments were performed at Mach 4 with an adiabatic wall, and mean flow measurements within the boundary layer were obtained. The data, when viewed in the velocity transformation suggested by Van Driest, show good general agreement with the composite boundary-layer profile developed for the low-speed turbulent boundary layer. Moreover, the pressure gradient parameter suggested by Alber & Coats was found to correlate the data with low-speed results
Smoothed particle magnetohydrodynamic simulations of protostellar outflows with misaligned magnetic field and rotation axes
We have developed a modified form of the equations of smoothed particle
magnetohydrodynamics which are stable in the presence of very steep density
gradients. Using this formalism, we have performed simulations of the collapse
of magnetised molecular cloud cores to form protostars and drive outflows. Our
stable formalism allows for smaller sink particles (< 5 AU) than used
previously and the investigation of the effect of varying the angle, {\theta},
between the initial field axis and the rotation axis. The nature of the
outflows depends strongly on this angle: jet-like outflows are not produced at
all when {\theta} > 30{\deg}, and a collimated outflow is not sustained when
{\theta} > 10{\deg}. No substantial outflows of any kind are produced when
{\theta} > 60{\deg}. This may place constraints on the geometry of the magnetic
field in molecular clouds where bipolar outflows are seen.Comment: Accepted for publication in MNRAS, 13 pages, 14 figures. Animations
can be found at
http://www.astro.ex.ac.uk/people/blewis/research/outflows_misaligned_fields.htm
A block diagonalization theorem in the energy-momentum method
We prove a geometric generalization of a block diagonalization theorem first found by the authors for
rotating elastic rods. The result here is given in the general context of simple mechanical systems with a
symmetry group acting by isometries on a configuration manifold. The result provides a choice of
variables for linearized dynamics at a relative equilibrium which block diagonalizes the second variation of
an augmented energy these variables effectively separate the rotational and internal vibrational modes. The
second variation of the effective Hamiltonian is block diagonal. separating the modes completely. while the
symplectic form has an off diagonal term which represents the dynamic interaction between these modes.
Otherwise, the symplectic form is in a type of normal form. The result sets the stage for the development
of useful criteria for bifurcation as well as the stability criteria found here. In addition, the techniques
should apply to other systems as well, such as rotating fluid masses
Normalizing connections and the energy-momentum method
The block diagonalization method for determining the stability of relative equilibria is discussed from
the point of view of connections. We construct connections whose horizontal and vertical decompositions simultaneosly put the second variation of the augmented Hamiltonian and the symplectic structure into normal form. The cotangent bundle reduction theorem provides the setting in which the results are obtained
- …