82,658 research outputs found
Transistorized Marx bank pulse circuit provides voltage multiplication with nanosecond rise-time
Base-triggered avalanche transistor circuit used in a Marx bank pulser configuration provides voltage multiplication with nanosecond rise-time. The avalanche-mode transistors replace conventional spark gaps in the Marx bank. The delay time from an input signal to the output signal to the output is typically 6 nanoseconds
Recommended from our members
A multi-spacecraft reanalysis of the atmosphere of Mars
We have conducted a nine-Mars Year (MY) consistent reanalysis of the martian atmosphere covering the period MY 24–32 and making use of data from three different spacecraft. Remotely-sensed measurements of temperature, dust opacity, water ice and ozone from NASA’s Mars Global Surveyor (MGS) and Mars Recconaisance Orbiter (MRO) and ESA’s Mars Express (MEx) were assimilated [1] into a single model simulation, sampled two-hourly over the whole period. This forms a large, regular reanalysis dataset that is being made publicly available as an output of the EU UPWARDS project. The same analysis technique, with an improved model and higher resolution will be conducted with ESA Trace Gas Orbiter (TGO) data as it becomes available
Recommended from our members
Trace gas assimilation of Mars orbiter observations
Ozone, water vapour and argon are minor constituents in the Martian atmosphere, observations of which can be of use in constraining atmospheric dynamical and physical processes. This is especially true in the winter season of each hemisphere, when the bulk of the main constituent in the atmosphere (CO2 ) condenses in the polar regions shifting the balance of atmospheric composition to a more trace gas rich air mass.
Current Mars Global Circulation Models (MGCMs) are able to represent the photochemistry occuring in the atmosphere, with constraints being imposed by comparisons with observations. However, a long term comparison using data assimilation provides a more robust constraint on the model. We aim to provide a technique for trace gas data assimilation for the analysis of observations from current and future satellite missions (such as ExoMars) which observe the spatial and temporal distribution of trace gases on Mars
The Cosmic Microwave Background and the Ionization History of the Universe
Details of how the primordial plasma recombined and how the universe later
reionized are currently somewhat uncertain. This uncertainty can restrict the
accuracy of cosmological parameter measurements from the Cosmic Microwave
Background (CMB). More positively, future CMB data can be used to constrain the
ionization history using observations. We first discuss how current
uncertainties in the recombination history impact parameter constraints, and
show how suitable parameterizations can be used to obtain unbiased parameter
estimates from future data. Some parameters can be constrained robustly,
however there is clear motivation to model recombination more accurately with
quantified errors. We then discuss constraints on the ionization fraction
binned in redshift during reionization. Perfect CMB polarization data could in
principle distinguish different histories that have the same optical depth. We
discuss how well the Planck satellite may be able to constrain the ionization
history, and show the currently very weak constraints from WMAP three-year
data.Comment: Changes to match MNRAS accepted versio
Automatic transponder
A method and apparatus for the automatic, remote measurement of the internal delay time of a transponder at the time of operation is provided. A small portion of the transmitted signal of the transponder is converted to the receive signal frequency of the transponder and supplied to the input of the transponder. The elapsed time between the receive signal locally generated and the receive signal causing the transmission of the transmitted signal is measured, said time being representative of or equal to the internal delay time of the transponder at the time of operation
- …