1,609 research outputs found

    Limits on Clouds and Hazes for the TRAPPIST-1 Planets

    Full text link
    The TRAPPIST-1 planetary system is an excellent candidate for study of the evolution and habitability of M-dwarf planets. Transmission spectroscopy observations performed with the Hubble Space Telescope (HST) suggest the innermost five planets do not possess clear hydrogen atmospheres. Here we reassess these conclusions with recently updated mass constraints and expand the analysis to include limits on metallicity, cloud top pressure, and the strength of haze scattering. We connect recent laboratory results of particle size and production rate for exoplanet hazes to a one-dimensional atmospheric model for TRAPPIST-1 transmission spectra. Doing so, we obtain a physically-based estimate of haze scattering cross sections. We find haze scattering cross sections on the order of 1e-26 to 1e-19 cm squared are needed in hydrogen-rich atmospheres for TRAPPIST-1 d, e, and f to match the HST data. For TRAPPIST-1 g, we cannot rule out a clear hydrogen-rich atmosphere. We also modeled the effects an opaque cloud deck and substantial heavy element content have on the transmission spectra. We determine that hydrogen-rich atmospheres with high altitude clouds, at pressures of 12mbar and lower, are consistent with the HST observations for TRAPPIST-1 d and e. For TRAPPIST-1 f and g, we cannot rule out clear hydrogen-rich cases to high confidence. We demonstrate that metallicities of at least 60xsolar with tropospheric (0.1 bar) clouds agree with observations. Additionally, we provide estimates of the precision necessary for future observations to disentangle degeneracies in cloud top pressure and metallicity. Our results suggest secondary, volatile-rich atmospheres for the outer TRAPPIST-1 planets d, e, and f.Comment: 15 pages, 3 figures, 2 tables, accepted in the Astronomical Journa

    Chimpanzees demonstrate individual differences in social information use

    Get PDF
    Studies of transmission biases in social learning have greatly informed our understanding of how behaviour patterns may diffuse through animal populations, yet within-species inter-individual variation in social information use has received little attention and remains poorly understood. We have addressed this question by examining individual performances across multiple experiments with the same population of primates. We compiled a dataset spanning 16 social learning studies (26 experimental conditions) carried out at the same study site over a 12-year period, incorporating a total of 167 chimpanzees. We applied a binary scoring system to code each participant’s performance in each study according to whether they demonstrated evidence of using social information from conspecifics to solve the experimental task or not (Social Information Score—‘SIS’). Bayesian binomial mixed effects models were then used to estimate the extent to which individual differences influenced SIS, together with any effects of sex, rearing history, age, prior involvement in research and task type on SIS. An estimate of repeatability found that approximately half of the variance in SIS was accounted for by individual identity, indicating that individual differences play a critical role in the social learning behaviour of chimpanzees. According to the model that best fit the data, females were, depending on their rearing history, 15–24% more likely to use social information to solve experimental tasks than males. However, there was no strong evidence of an effect of age or research experience, and pedigree records indicated that SIS was not a strongly heritable trait. Our study offers a novel, transferable method for the study of individual differences in social learning

    Multi-Dimensional Damage Detection

    Get PDF
    Methods and systems may provide for a structure having a plurality of interconnected panels, wherein each panel has a plurality of detection layers separated from one another by one or more non-detection layers. The plurality of detection layers may form a grid of conductive traces. Additionally, a monitor may be coupled to each grid of conductive traces, wherein the monitor is configured to detect damage to the plurality of interconnected panels in response to an electrical property change with respect to one or more of the conductive traces. In one example, the structure is part of an inflatable space platform such as a spacecraft or habitat

    Regular Tart Cherry Intake Alters Abdominal Adiposity, Adipose Gene Transcription, and Inflammation in Obesity-Prone Rats Fed a High Fat Diet

    Full text link
    Abstract Obesity, systemic inflammation, and hyperlipidemia are among the components of metabolic syndrome, a spectrum of phenotypes that can precede the development of type 2 diabetes and cardiovascular disease. Animal studies show that intake of anthocyanin-rich extracts can affect these phenotypes. Anthocyanins can alter the activity of tissue peroxisome proliferator-activated receptors (PPARs), which affect energy substrate metabolism and inflammation. However, it is unknown if physiologically relevant, anthocyanin-containing whole foods confer similar effects to concentrated, anthocyanin extracts. The effect of anthocyanin-rich tart cherries was tested in the Zucker fatty rat model of obesity and metabolic syndrome. For 90 days, rats were pair-fed a higher fat diet supplemented with either 1% (wt/wt) freeze-dried, whole tart cherry powder or with a calorie- and macronutrient-matched control diet. Tart cherry intake was associated with reduced hyperlipidemia, percentage fat mass, abdominal fat (retroperitoneal) weight, retroperitoneal interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression, and plasma IL-6 and TNF-α. Tart cherry diet also increased retroperitoneal fat PPAR-α and PPAR-γ mRNA (P=.12), decreased IL-6 and TNF-α mRNA, and decreased nuclear factor κB activity. In conclusion, in at-risk obese rats fed a high fat diet, physiologically relevant tart cherry consumption reduced several phenotypes of metabolic syndrome and reduced both systemic and local inflammation. Tart cherries may reduce the degree or trajectory of metabolic syndrome, thereby reducing risk for the development of type 2 diabetes and heart disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78120/1/jmf.2008.0270.pd

    Blueberry Intake Alters Skeletal Muscle and Adipose Tissue Peroxisome Proliferator-Activated Receptor Activity and Reduces Insulin Resistance in Obese Rats

    Full text link
    Metabolic syndrome can precede the development of type 2 diabetes and cardiovascular disease and includes phenotypes such as obesity, systemic inflammation, insulin resistance, and hyperlipidemia. A recent epidemiological study indicated that blueberry intake reduced cardiovascular mortality in humans, but the possible genetic mechanisms of this effect are unknown. Blueberries are a rich source of anthocyanins, and anthocyanins can alter the activity of peroxisome proliferator-activated receptors (PPARs), which affect energy substrate metabolism. The effect of blueberry intake was assessed in obesity-prone rats. Zucker Fatty and Zucker Lean rats were fed a higher-fat diet (45% of kcal) or a lower-fat diet (10% of kcal) containing 2% (wt/wt) freeze-dried whole highbush blueberry powder or added sugars to match macronutrient and calorie content. In Zucker Fatty rats fed a high-fat diet, the addition of blueberry reduced triglycerides, fasting insulin, homeostasis model index of insulin resistance, and glucose area under the curve. Blueberry intake also reduced abdominal fat mass, increased adipose and skeletal muscle PPAR activity, and affected PPAR transcripts involved in fat oxidation and glucose uptake/oxidation. In Zucker Fatty rats fed a low-fat diet, the addition of blueberry also significantly reduced liver weight, body weight, and total fat mass. Finally, Zucker Lean rats fed blueberry had higher body weight and reduced triglycerides, but all other measures were unaffected. In conclusion, whole blueberry intake reduced phenotypes of metabolic syndrome in obesity-prone rats and affected PPAR gene transcripts in adipose and muscle tissue involved in fat and glucose metabolism.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90448/1/jmf-2E2010-2E0292.pd
    • …
    corecore