2,258 research outputs found

    Order, Please! Uncertainty in the Ordinal-Level Classification of Chlorophyceae

    Get PDF
    Background. Chlorophyceae is one of three most species-rich green algal classes and also the only class in core Chlorophyta whose monophyly remains uncontested as gene and taxon sampling improves. However, some key relationships within Chlorophyceae are less clear-cut and warrant further investigation. The present study combined genome-scale chloroplast data and rich sampling in an attempt to resolve the ordinal classification in Chlorophyceae. The traditional division into Sphaeropleales and Volvocales (SV), and a clade containing Oedogoniales, Chaetopeltidales, and Chaetophorales (OCC) was of particular interest with the addition of deeply branching members of these groups, as well as the placement of several incertae sedis taxa. Methods. We sequenced 18 chloroplast genomes across Chlorophyceae to compile a data set of 58 protein-coding genes of a total of 68 chlorophycean taxa. We analyzed the concatenated nucleotide and amino acid datasets in the Bayesian and Maximum Likelihood frameworks, supplemented by analyses to examine potential discordant signal among genes. We also examined gene presence and absence data across Chlorophyceae. Results. Concatenated analyses yielded at least two well-supported phylogenies: nucleotide data supported the traditional classification with the inclusion of the enigmatic Treubarinia into Sphaeropleales sensu lato. However, amino acid data yielded equally strong support for Sphaeropleaceae as sister to Volvocales, with the rest of the taxa traditionally classified in Sphaeropleales in a separate clade, and Treubarinia as sister to all of the above. Single-gene and other supplementary analyses indicated that the data have low phylogenetic signal at these critical nodes. Major clades were supported by genomic structural features such as gene losses and trans-spliced intron insertions in the plastome. Discussion. While the sequence and gene order data support the deep split between the SV and OCC lineages, multiple phylogenetic hypotheses are possible for Sphaeropleales s.l. Given this uncertainty as well as the higher-taxonomic disorder seen in other algal groups, dwelling on well-defined, strongly supported Linnaean orders is not currently practical in Chlorophyceae and a less formal clade system may be more useful in the foreseeable future. For example, we identify two strongly and unequivocally supported clades: Treubarinia and Scenedesminia, as well as other smaller groups that could serve a practical purpose as named clades. This system does not preclude future establishment of new orders, or emendment of the current ordinal classification if new data support such conclusions

    Order, Please! Uncertainty in the Ordinal-Level Classification of Chlorophyceae

    Get PDF
    Background. Chlorophyceae is one of three most species-rich green algal classes and also the only class in core Chlorophyta whose monophyly remains uncontested as gene and taxon sampling improves. However, some key relationships within Chlorophyceae are less clear-cut and warrant further investigation. The present study combined genome-scale chloroplast data and rich sampling in an attempt to resolve the ordinal classification in Chlorophyceae. The traditional division into Sphaeropleales and Volvocales (SV), and a clade containing Oedogoniales, Chaetopeltidales, and Chaetophorales (OCC) was of particular interest with the addition of deeply branching members of these groups, as well as the placement of several incertae sedis taxa. Methods. We sequenced 18 chloroplast genomes across Chlorophyceae to compile a data set of 58 protein-coding genes of a total of 68 chlorophycean taxa. We analyzed the concatenated nucleotide and amino acid datasets in the Bayesian and Maximum Likelihood frameworks, supplemented by analyses to examine potential discordant signal among genes. We also examined gene presence and absence data across Chlorophyceae. Results. Concatenated analyses yielded at least two well-supported phylogenies: nucleotide data supported the traditional classification with the inclusion of the enigmatic Treubarinia into Sphaeropleales sensu lato. However, amino acid data yielded equally strong support for Sphaeropleaceae as sister to Volvocales, with the rest of the taxa traditionally classified in Sphaeropleales in a separate clade, and Treubarinia as sister to all of the above. Single-gene and other supplementary analyses indicated that the data have low phylogenetic signal at these critical nodes. Major clades were supported by genomic structural features such as gene losses and trans-spliced intron insertions in the plastome. Discussion. While the sequence and gene order data support the deep split between the SV and OCC lineages, multiple phylogenetic hypotheses are possible for Sphaeropleales s.l. Given this uncertainty as well as the higher-taxonomic disorder seen in other algal groups, dwelling on well-defined, strongly supported Linnaean orders is not currently practical in Chlorophyceae and a less formal clade system may be more useful in the foreseeable future. For example, we identify two strongly and unequivocally supported clades: Treubarinia and Scenedesminia, as well as other smaller groups that could serve a practical purpose as named clades. This system does not preclude future establishment of new orders, or emendment of the current ordinal classification if new data support such conclusions

    Summary and conclusions of an independent analysis of the weather modification program in the San Luis Valley

    Get PDF
    February 12, 1973.Prepared for the Colorado Advisory Committee on Weather Modification and the Colorado Director of Natural Resources.Includes bibliographical references.A comprehensive analysis of the cloud seeding activities in the San Luis Valley of southern Colorado is in progress. Several more months will be required for its completion. Certain tentative conclusions are now possible. These are presented in summary form and in ·some detail in the following sections. It is planned that a technical report will be prepared and submitted to a scientific journal for publication at the completion of the study

    Assessing Combinability of Phylogenomic Data Using Bayes Factors

    Get PDF
    With the rapid reduction in sequencing costs of high-throughput genomic data, it has become commonplace to use hundreds of genes to infer phylogeny of any study system. While sampling a large number of genes has given us a tremendous opportunity to uncover previously unknown relationships and improve phylogenetic resolution, it also presents us with new challenges when the phylogenetic signal is confused by differences in the evolutionary histories of sampled genes. Given the incorporation of accurate marginal likelihood estimation methods into popular Bayesian software programs, it is natural to consider using the Bayes Factor (BF) to compare different partition models in which genes within any given partition subset share both tree topology and edge lengths. We explore using marginal likelihood to assess data subset combinability when data subsets have varying levels of phylogenetic discordance due to deep coalescence events among genes (simulated within a species tree), and compare the results with our recently described phylogenetic informational dissonance index (D) estimated for each data set. BF effectively detects phylogenetic incongruence and provides a way to assess the statistical significance of D values. We use BFs to assess data combinability using an empirical data set comprising 56 plastid genes from the green algal order Volvocales. We also discuss the potential need for calibrating BFs and demonstrate that BFs used in this study are correctly calibrated

    THE EFFECT OF MEASUREMENT ANGLE ON APPROXIMATIONS OF MAXIMUM JOINT TORQUE

    Get PDF
    The purpose of this study was to investigate the underestimation of maximum knee joint torque using a single joint-angle position for a variety of realistic torque-angle curves. The maximum force production capability of the knee flexors and knee extensors was modelled using literature-based parameters to define a quadratic torque-angle relationship. Model parameters were varied within a normative range and simulated measured torque was compared to true peak torque (model) for a series of commonly tested joint angles. Measurements furthest from the optimal angle for maximum strength were associated with underestimated torques that were 96% and 80% lower than true peak torque. Therefore, it is essential that knee joint torque is measured as close to the optimal angle as possible when attempting to determine maximum strength capability using a single discrete measurement

    Microlensing of Relativistic Knots in the Quasar HE1104-1805

    Full text link
    We present 3 years of photometry of the ``Double Hamburger'' lensed quasar, HE1104-1805, obtained on 102 separate nights using the OGLE 1.3-m telescope. Both the A and B images show variations, but with substantial differences in the lighcurves at all time delays. At the 310 day delay reported by Wisotzki and collaborators the difference lightcurve has an rms amplitude of 0.060 mag. The structure functions for the A and B images are quite different, with image A more than twice as variable as image B (a factor of 4 in structure function) on timescales of less than a month. Adopting microlensing as a working hypothesis for the uncorrelated variability, the short timescale argues for the relativistic motion of one or more components of the source. We argue that the small amplitude of the fluctuations is due to the finite size of the source with respect to the microlenses.Comment: As accepted for publication in ApJ. 22 pages. The discussion of microlensing at high optical depth has been shortened and a few minor points have been clarifie

    Polytomies and Bayesian Phylogenetic Inference

    Get PDF
    This is an electronic version of an article published in Systematic Biology [Lewis, Paul O., Mark T. Holder, and Kent E. Holsinger. Polytomies and Bayesian phylogenetic inference. Systematic Biology, 54:241{253, 2005.] Systematic Biology is available online at informaworld http://dx.doi.org/10.1080/10635150590924208Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow the use of much more realistic models than currently possible with maximum likelihood methods. There are, however, a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short branch lengths and low values for non-Bayesian measures of support such as nonparametric bootstrapping. For the four-taxon case when the true tree is the star phylogeny, Bayesian analyses become increasingly unpredictable in their preference for one of the three possible resolved tree topologies as data set size increases. This leads to the prediction that hard (or near-hard) polytomies in nature will cause unpredictable behavior in Bayesian analyses, with arbitrary resolutions of the polytomy receiving very high posterior probabilities in some cases. We present a simple solution to this problem involving a reversible-jump Markov chain Monte Carlo (MCMC) algorithm that allows exploration of all of tree space, including unresolved tree topologies with one or more polytomies. The reversible-jump MCMC approach allows prior distributions to place some weight on less-resolved tree topologies, which eliminates misleadingly high posteriors associated with arbitrary resolutions of hard polytomies. Fortunately, assigning some prior probability to polytomous tree topologies does not appear to come with a significant cost in terms of the ability to assess the level of support for edges that do exist in the true tree. Methods are discussed for applying arbitrary prior distributions to tree topologies of varying resolution, and an empirical example showing evidence of polytomies is analyzed and discussed

    The Akaike Information Criterion Will Not Choose the No Common Mechanism Model

    Get PDF
    This is an electronic version of an article published in Systematic Biology [Holder, Mark T., Paul O. Lewis, and David L. Swofford. The Akaike information criterion will not choose the no common mechanism model. Systematic Biology, 59(4):477{485, 2010. ] Systematic Biology is available online at informaworld http://dx.doi.org/10.1093/sysbio/syq028
    corecore