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Abstract.—Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow
the use of much more realistic models than currently possible with maximum likelihood methods. There are, however,
a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short edge
lengths and low values for non-Bayesian measures of support such as nonparametric bootstrapping. For the four-taxon
case when the true tree is the star phylogeny, Bayesian analyses become increasingly unpredictable in their preference
for one of the three possible resolved tree topologies as data set size increases. This leads to the prediction that hard (or
near-hard) polytomies in nature will cause unpredictable behavior in Bayesian analyses, with arbitrary resolutions of the
polytomy receiving very high posterior probabilities in some cases. We present a simple solution to this problem involving
a reversible-jump Markov chain Monte Carlo (MCMC) algorithm that allows exploration of all of tree space, including
unresolved tree topologies with one or more polytomies. The reversible-jump MCMC approach allows prior distributions to
place some weight on less-resolved tree topologies, which eliminates misleadingly high posteriors associated with arbitrary
resolutions of hard polytomies. Fortunately, assigning some prior probability to polytomous tree topologies does not appear
to come with a significant cost in terms of the ability to assess the level of support for edges that do exist in the true tree.
Methods are discussed for applying arbitrary prior distributions to tree topologies of varying resolution, and an empirical
example showing evidence of polytomies is analyzed and discussed. [Bayesian; phylogenetics; polytomy; reversible-jump

MCMC; star tree; unresolved.]

Bayesian phylogenetic analyses were recently criti-
cized (Suzuki etal.,, 2002) for producing high poste-
rior clade probabilities under simulation conditions in
which no such clade exists. High posterior probabilities
for clades with relatively low bootstrap support have
also been noted in real data (Alfaro et al., 2003; Douady
etal.,, 2003). Data simulated from a star tree (Fig. 1)
and analyzed with current Markov chain Monte Carlo
(MCMC) approaches to Bayesian phylogenetic analy-
sis produces a surprising result (Table 1). When only
data sets containing a single simulated site are analyzed,
the analysis produces, as expected, nearly equal poste-
rior probabilities for each of the three possible fully re-
solved tree topologies. When much larger data sets are
simulated (e.g., 100,000 sites), disturbingly large poste-
rior probabilities can be seen in the first few simula-
tion replicates (note 0.9892 for replicate 11 in Table 1).
This result is counterintuitive because one might rea-
sonably expect the posterior distribution to approach
(3, 3, %) with increasing sample size, reflecting the fact
that there is in reality no true support for any of the
three resolved tree topologies. Instead, the expected dis-
tribution occurs only with the smallest possible sample
sizes in which there truely is no phylogenetic infor-
mation. For large data sets, the phylogenetic uncer-
tainty generated by the true polytomy manifests itself
as unpredictability in the level of estimated posterior
support for arbitrary resolutions of the polytomy, not
as increased homogeneity of support for all possible
resolutions.

This Bayesian star tree paradox was first noted by
Suzuki et al. (2002), who were primarily investigating
unduly high Bayesian posteriors in cases of model viola-
tion. It is unclear from their study whether the paradox
results from simulating a star tree or from using a dif-

ferent model to generate the data than was used in the
analysis. Our simulations (Table 1) and the much more
extensive simulations of Cummings et al. (2003) show
that the paradox can result without model violation, al-
though certainly some types of model violation would
exacerbate the problem. Others noted unusually high
posterior probabilities for edges with relatively low boot-
strap proportions and short estimated edge lengths in
real data sets (Alfaro et al., 2003; Douady et al., 2003) and
many more undocumented examples can be found by
searching through papers in which both bootstrapping
and Bayesian analyses were performed, and trees were
shown with branch lengths proportional to evolution-
ary distance (e.g., Collin, 2003; DeBry, 2003; Jordan et al.,
2003; Koepfli and Wayne, 2003; Steppan et al., 2004).
These examples suggest that a similar result can occur
with realistic amounts of data when the expected num-
ber of changes on an edge is very small. It is worth noting
that data sets used to address phylogeographic questions
contain many closely related sequences and, because of
the abundance of very short edges and perhaps true hard
polytomies, may be highly susceptible to this sort of
artifact.

One solution to the problem of occasional extreme pos-
terior clade probabilities was suggested by Douady et al.
(2003), who proposed using a bootstrap analysis in which
individual bootstrap replicate data sets were analyzed
phylogenetically using a Bayesian MCMC analysis. Al-
though such a procedure would have the desired effect
of making analyses more conservative (Waddell et al.,
2002), it requires many times the computational effort of
a single MCMC analysis.

We further explore the Bayesian star tree paradox and
present a direct, fully Bayesian solution that sacrifices
little of the computational tractability of conventional

241


https://core.ac.uk/display/213397387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

242

SYSTEMATIC BIOLOGY

VOL. 54

FIGURE 1. Star tree used for simulations to exemplify the Bayesian
star tree paradox.

Bayesian analyses while accurately reporting weak sup-
port for very short edges when they exist.

THE NATURE OF THE PROBLEM

The basic problem underlying the Bayesian star tree
paradox is that the true (star) tree from which data were
generated is not among the hypotheses being considered
in the Bayesian analysis. Although it is true that each of

TABLE 1.

the three possible resolutions of the four-taxon star tree
can be made arbitrarily close to the star tree by shrink-
ing the central edge, this fact only adds to the problem
because it is then completely arbitrary which of the three
tree topologies is chosen to represent the polytomy. The
central problem is thus the statistical identifiability of the
tree topology.

A simple coin-flipping example serves to illustrate
this point. Suppose that a perfectly fair coin is flipped
1000 times and a Bayesian analysis is used to determine
whether the coin is head biased or tail biased. Just as
in the star tree paradox, the truth (perfectly fair coin) is
not allowed as a possibility in this analysis; the analysis
must choose between one of two incorrect hypotheses.
The model used has a single parameter p, which rep-
resents the probability of landing heads on any given
flip of the coin, and flips are considered to be condi-
tionally independent given the value of p. The outcome
of a series of flips follows a binomial distribution in
which p is the probability of “success” on any given
trial. The tail-biased hypothesis (Hr) is represented by
p < 0.5, whereas the head-biased hypothesis (Hy) is
indicated when p > 0.5, with the fair coin hypothesis
Hp, if it were allowed, coinciding with p = 0.5. When
p = 0.5 — €, where € is some arbitrarily small but positive
real number, the hypothesis Hr still holds, although the
value of p is very close to the fair-coin value. Likewise,
p = 0.5 + € is very close to the fair-coin value, but never-
theless lies inside the realm of hypothesis Hy. Letting the
prior distribution of p be the Uniform(0,1) distribution
assigns equal prior probability to the two hypotheses,

Results for 25 replicate simulations using the star tree of Figure 1. Data sets were composed of a single nucleotide site or 100,000

nucleotide sites. The Jukes and Cantor (1969) model (no rate heterogeneity) was used for the simulations as well as the analysis, and each of the
four edges had length 0.05 expected substitutions per site. For each replicate, the largest posterior probability of the three is in bold.

1 site 100,000 sites
Sequence
replicate (1,2,(3,4)) (1,3,(2,4)) (1,4,(2,3)) (1,2,(3,4)) (1,3,(2,4)) (1,4,(2,3))
1 0.3405 0.3242 0.3353 0.2990 0.3288 0.3722
2 0.3410 0.3279 0.3311 0.3172 0.0464 0.6364
3 0.3308 0.3327 0.3365 0.1584 0.7969 0.0447
4 0.3318 0.3329 0.3353 0.4625 0.3600 0.1775
5 0.3302 0.3367 0.3331 0.7077 0.0881 0.2042
6 0.3380 0.3343 0.3277 0.0884 0.0262 0.8854
7 0.3324 0.3357 0.3319 0.9551 0.0422 0.0027
8 0.3348 0.3293 0.3359 0.1826 0.5511 0.2663
9 0.3344 0.3291 0.3365 0.3043 0.4224 0.2733
10 0.3367 0.3320 0.3313 0.6559 0.0707 0.2734
11 0.3355 0.3262 0.3383 0.0073 0.9892 0.0035
12 0.3367 0.3318 0.3315 0.3029 0.2922 0.4049
13 0.3358 0.3310 0.3332 0.4607 0.1362 0.4031
14 0.3466 0.3211 0.3323 0.6704 0.0975 0.2321
15 0.3429 0.3295 0.3276 0.6120 0.1852 0.2028
16 0.3216 0.3390 0.3394 0.3605 0.3570 0.2825
17 0.3318 0.3321 0.3361 0.5455 0.2505 0.2040
18 0.3369 0.3374 0.3257 0.4253 0.4254 0.1493
19 0.3348 0.3332 0.3320 0.1595 0.7465 0.0940
20 0.3284 0.3407 0.3309 0.4436 0.1697 0.3867
21 0.3288 0.3370 0.3342 0.3994 0.3904 0.2102
22 0.2660 0.4605 0.2735 0.1151 0.5912 0.2937
23 0.3345 0.3358 0.3297 0.8333 0.0951 0.0716
24 0.3355 0.3267 0.3378 0.8317 0.0736 0.0947
25 0.3430 0.3339 0.3231 0.2703 0.4112 0.3185
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FIGURE 2. Three simulations showing concentration of the poste-
rior distribution for the parameter p as sample size increases. Each
pane represents a single realization from a Binomial distribution hav-
ing p = 0.5 and the number of flips indicated. (a) Six heads observed
in 10 flips. (b) 48 heads observed in 100 flips. (c) 475 heads observed
in 1000 flips. In each case a flat (Uniform) prior distribution for p was
assumed.

Hpy and Hr (hypothesis Hr is not considered, in keeping
with the star tree paradox analogy).

Figure 2 shows that the posterior distribution for p be-
comes concentrated and the mode approaches 0.5 as the
number of flips increases. This behavior would be ideal if
we were interested in estimating p, because with increas-
ing data any reasonable estimate of p derived from the
posterior distribution approaches the true value of 0.5
with increasing sample size. Unfortunately, we are in-
stead interested in the posterior probabilities of the two
mutually exclusive hypotheses, Hy and Hr. The poste-
rior probability of hypothesis Hr can be obtained by inte-
grating the posterior distribution of p from 0.0t0 0.5, and
the posterior probability of Hy is just 1 — Pr(Hr). As the
sample size increases, it becomes very easy for the spike-
like posterior distribution to shift slightly from one side
of the 0.5 value to the other (see for example Fig. 2c).
Even though it is clear that the data overwhelmingly fa-
vor values of p very close to the fair-coin value 0.5, the
fair-coin hypothesis is not an option and thus the distri-
bution comes down (sometimes heavily) on one side or
the other. Although this is an informal description, it can

be formally shown that the marginal posterior probabil-
ity of either hypothesis has a Uniform(0,1) distribution
in the limit as n — oo. This means, with enough data, the
posterior probabilities of either Hy or Hr would be com-
pletely unpredictable. We note that this result does not
necessarily translate to the phylogeny problem, but con-
jecture that, at the very least, posterior probabilities of
particular resolutions of polytomous tree topologies will
become more unpredictable with increasing sequence
length.

The obvious solution is to allow the fair-coin hypothe-
sis onto the playing field so that it can compete with the
other two hypotheses. The fair coin hypothesis is repre-
sented by the single point p = 0.5, whereas the other two
hypotheses each correspond to exactly half the param-
eter space of p. Assuming a flat prior for p means that
the fair-coin hypothesis receives zero prior probability
mass, and no amount of data would be able to turn this
around to produce a substantial posterior probability for
this one point. The key is to use a “point mass” prior
probability on the point p = 0.5. For example, if the Hr
hypothesis should have equal standing with the other
two hypotheses, it could be given a point mass prior of
1/3, with Hyy and Hr also receiving prior probabilities of
1/3 each.

In the analogous phylogenetic case, the solution in-
volves treating unresolved tree topologies as hypothe-
ses in their own right. In the simple case of four taxa, this
amounts to viewing tree space as comprising four tree
topologies, not three, with the star tree being the hereto-
fore overlooked fourth candidate. This makes it possible
for the posterior distribution to become concentrated on
the true tree, whether that true tree is the star tree or one
of the fully resolved tree topologies.

Allowing tree topologies with polytomies to contend
with fully resolved topologies in a Bayesian MCMC
analysis is complicated by the fact that unresolved tree
topologies have fewer edge length parameters than fully
resolved topologies. Thus, the MCMC analysis must
jump between models of differing dimension. Such sit-
uations are ideal candidates for reversible-jump MCMC
(Green, 1995), and the remainder of this paper will be
devoted to describing just such a solution.

GENERALIZING BAYESIAN PHYLOGENETICS TO ALLOW
PoLYTOMOUS TREE TOPOLOGIES

Distinct tree topologies in likelihood-based phyloge-
netic analyses are most properly treated as separate mod-
els rather than distinct values of a single discrete param-
eter (Suchard et al., 2001; Yang et al., 1985). Taking this
view, a four-taxon star tree is a model with one fewer pa-
rameter than any unrooted bifurcating four-taxon tree,
and choosing among tree topologies is more appropri-
ately viewed as an exercise in model selection rather than
parameter estimation.

One possible goal is to place unresolved tree topologies
on equal footing with fully resolved tree topologies, and
asensible starting pointis to give all tree topologies equal
prior probability, whether they represent a fully resolved
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tree, the star tree, or something between these extremes.
Doing this considerably expands tree space, as shown
by Felsenstein (2003), who described a simple algorithm
for obtaining the number of tree topologies T, ,, having n
taxa and m internal nodes. As an example, there are 105
unrooted, bifurcating tree topologies for n = 6 taxa, but
there are more than twice this number of tree topologies
(236) if less-resolved tree topologies are counted. There
is one tree having m =1 internal nodes (the star tree),
25 tree topologies having m = 2 internal nodes, 105 tree
topologies having m = 3 internal nodes, and 105 fully
resolved tree topologies having m = 4 internal nodes.
Rather than using a flat topology prior, one might
choose to give tree topologies with fewer internal edges
greater prior weight than more-resolved tree topologies.
If a particularly controversial edge is short but has high
posterior probability under a conventional analysis, it
may be desirable to choose a prior that favors polytomies
in order to be conservative. Critics may be convinced if
the high posterior support for the edge persists despite
strong pressure from the prior to collapse the edge.

Bayesian MCMC Analyses

Bayesian approaches to phylogenetics, as performed
by programs such as MrBayes (Huelsenbeck and
Ronquist, 2003), use MCMC to approximate the poste-
rior probability of different hypotheses. Specifically, they
employ the Metropolis-Hastings (Metropolis et al., 1953;
Hastings, 1970) algorithm, which consists of stochasti-
cally proposed changes to the parameters of the model
(edge lengths and parameters in the substitution model)
and a simple set of rules for deciding whether or not to
accept these moves. The acceptance/rejection decision is
based upon the product of the Metropolis ratio (poste-
rior density at the proposed point divided by the poste-
rior density at the current point) and the Hastings ratio
(probability density of the reverse move divided by the
probability density of the forward move). The Hastings
ratio corrects for asymmetry in the proposal distribution.

If the data are ignored, the prior distribution equals the
posterior distribution and a Bayesian MCMC analysis re-
sults in an approximation of the prior distribution. With
a flat prior on tree topologies, the Markov chain should
visit the star tree and any one of the three resolved tree
topologies with equal frequency. But consider the effect
of removing the central edge from a four-taxon tree (cre-
ating the star tree) on the ratio of prior densities. For sim-
plicity, assume that edge lengths are the only parameters
in the substitution model (e.g., the Jukes-Cantor model),
and the prior for every topology (regardless of degree
of resolution) is the same so that the specific topologies
involved in the move do not affect the prior ratio. Before
the move, the prior distribution comprises five terms,
corresponding to the prior probability density evaluated
at each of the five edge lengths. On the other hand, the
prior for the star tree comprises only four terms because
there are only four edges. The ratio of prior densities for
the move (i.e., the prior density for proposed star tree di-
vided by the prior density for the current resolved tree)

mustbe 1/f(v), where f(v)is the prior density of the edge
length v that corresponds to the edge missing from the
star tree topology. This prior ratio is not a “legitimate” ra-
tio for use in the Metropolis-Hastings algorithm because
the probability densities have different dimensions; us-
ing such a ratio is analagous to comparing a meter with a
square meter. Fortunately, Green (1995) described a gen-
eral way to correct for moves between models of dif-
ferent dimension, and this further modification of the
Metropolis-Hastings algorithm is called reversible-jump
MCMC, or the Metropolis-Hastings-Green algorithm.

Reversible-Jump MCMC for Moving between Tree
Topologies of Differing Dimension

Reversible-jump MCMC can be employed to explore
the space of all unrooted tree topologies, including less-
resolved tree topologies such as the star tree. The basic al-
gorithm described here involves four types of moves: (1)
the “Larget-Simon” move; (2) the “Change-edge” move;
(3) the “Add-edge” move; and (4) the “Delete-edge”
move. With probability v, one of the two dimension-
changing moves (either Add-edge or Delete-edge) is
attempted, and with probability 1 — ¢ either the Larget-
Simon or Change-edge moveis attempted (depending on
whether the current tree is the star tree). If a decision is
made to attempt a dimension-changing move, the Add-
edge move and Delete-edge moves are both chosen with
probability 0.5 unless the current tree is either the star
tree topology (in which case only Add-edge moves can
be attempted) or a fully resolved tree topology (in which
case only Delete-edge moves can be attempted).

An asterisk superscript in the following discussion de-
notes a quantity related to the proposed new state of the
Markov chain, whereas the same symbol without the as-
terisk refers to the current state of the chain. For exam-
ple, v* is used to indicate a proposed new edge length,
whereas just v refers to the length of the edge before
the move is proposed. It is assumed throughout that the
prior distribution for edge lengths is exponential with
mean 6~!. The probability density function in this case
is f(v) = #e~?". This same distribution is assumed when
generating new edge lengths to break up polytomies.
Uniform random deviates in this paper are always Uni-
form(0,1) random deviates.

The Larget-Simon move.—The Larget-Simon move is
identical to the move labeled “LOCAL move without a
molecular clock” by Larget and Simon (1999). This move
always proposes a length change to three contiguous
edges in the tree and sometimes changes the tree topol-
ogy by creating a nearest-neighbor interchange (NNI)
rearrangement. This move was described in detail by
Larget and Simon (1999).

The Change-edge move.—The Change-edge move rep-
resents a simple modification of the Larget-Simon move
for the special case of a star phylogeny. Star trees do not
have three contiguous edges and thus Larget-Simon pro-
posals cannot strictly be applied to them. The Change-
edge move instead simply modifies the length of a single
edge using the same proposal mechanism employed in
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the Larget-Simon move to change the length of the entire ~ (a) 3 3 edge
.1 1 1 2 created

three-edge tree segment. The acceptance probability for /

this move is: 4 4

min{ 1 (hkehlpod) y (prlf)r> 8 (Hash.ngs)} 1)
ratio ratio ratio

The likelihood ratio depends on the particular substi-
tution model chosen and is the ratio of the likelihood
of the tree after the proposed change has been made to
the likelihood of the tree before the proposed change has
been made. The prior ratio is the ratio of the prior prob-
ability density after the move to the prior density before
the move. Only a single parameter is involved in this
move (the edge length chosen at random to be modified),
so the prior ratio is

Qe 0" PP
06*9\) =e 3 : (2)

The Hastings ratio for the Change-edge move is the
probability of proposing a move that would exactly re-
verse the Change-edge move divided by the probability
of proposing the Change-edge move itself. The new edge
length v* is proposed as follows:

v = vek(u70.5) (3)

where u is a Uniform random deviate. This expands or
contracts the original edge length by an amount deter-
mined by u and the tuning parameter A. The probability
density of the proposed v* given A and v is (Av*)~!, and
the probability density corresponding to a move that ex-
actly reverses this Change-edge move is (Av)~}, so the
Hastings ratio is simply v*/v. The Hastings ratio for the
Larget-Simon move, for comparison, is (z*/z)* (Holder
et al., in revision), where z* is the length of the three-
edge segment after the proposed move and z is its length
before the proposed move.

The Add-edge move.—The Add-edge move (Fig. 3a) re-
sults in the addition of a parameter to the model. One
existing polytomy is chosen at random and the edges at-
tached to the central node of that polytomy are split up
into two groups (also randomly) and separated with a
new edge. Because the Add-edge and Delete-edge moves
are dimension-changing moves, the calculation of the ac-
ceptance probability requires not only the likelihood ra-
tio, prior ratio, and Hastings ratio, but also a Jacobian
term that corrects for the fact that the model dimension
changes:

. { <likelihood> <prior) (Hastings)
min< 1, . X L] X .
ratio ratio ratio

X (]acobian)} 4)

dge
(b) 1 3 4 1 3 4 e
. deleted,
- > \/_ creating
|
5 ’ polytomy
5 5

Delete-edge move

FIGURE 3. The two dimension-changing moves. (a) An Add-edge
move creates a new internal edge and breaks up an existing polytomy.
The asterisks indicate polytomies that could potentially participate in
this move. (b) A Delete-edge move deletes an existing internal edge
and either creates a new polytomy or enlarges an existing one. In this
case, asterisks indicate edges that could potentially be deleted in this
move.

The prior ratio for the Add-edge move is

”n,m+1f(v*)

TTn,m

()

where 1, ,, is the prior probability for a tree topology
with n taxa and m internal nodes (m is the number of
internal nodes before the Add-edge move) and f(v*) is
the edge length prior density evaluated at the new edge
length v*. All other edge lengths and substitution model
parameters maintain the same values before and after
the proposed Add-edge move, so all other terms in the
prior ratio cancel.

The Hastings ratio for an Add-edge move is the
probability of proposing a Delete-edge move that ex-
actly reverses the proposed Add-edge move, divided
by the probability of proposing the Add-edge move it-
self. Proposing an Add-edge move involves the follow-
ing steps:

1. Choose to perform the Add-edge move rather than
the Delete-edge move

2. Choose a polytomy at random from among all poly-
tomies present in the tree

3. Choose one of the possible ways of dividing the k
edges of the polytomy between the two nodes

4. Choose a length for the newly created edge

The probability of the first step is 0.5 if there is a choice
to be made. If the current state of the chain is the star
tree, then this probability will be 1.0 because the Add-
edge move is the only one possible. The probability of

the second step is simply nl—p, where 7, is the number
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of polytomies present in the tree before the move. The The Jacobian term for this move is

number of distinct ways of dividing k edges into two

groups, making sure that at least three edges are at- Jp* 1 1

tached to each node afterwards, is 2! —k — 1, so the Sl T o1 — u) = oo (11)

probability of step three is 5——. To choose a new
length, a Uniform random deviate u is drawn and trans-
formed into a random deviate from the edge length prior
distribution:

V¥ = —% In(1 — u) (6)

Thus, the fourth step has no effect on the probability of
the Add-edge move because the value u has Uniform
probability density 1.0.

Proposing the corresponding Delete-edge move in-
volves only two steps:

1. Choose to perform the Delete-edge move rather than
the Add-edge move

2. Choose the particular internal edge in the tree to delete
in order to restore the polytomy broken up by the pro-
posed Add-edge move

The probability of the first step is again 0.5 unless the
proposed Add-edge move yields a fully resolved
tree, in which case the probability of the first step is
1.0. The probability of the second step is 1.-, where 1, is
the number of internal edges present before the Add- -edge
move. The Hastings ratio is therefore

Hastings ratio for Add-edge move

_ Pr(reverse Add-edge move)

7
Pr(Add-edge move) @

1

1+4+n,
=W ‘ 8)

[ () (zmlkl)(l)]
w21 —k —1)
= e ©)
+ ne
where
0.5 if current tree is the star tree and
proposed tree is not fully resolved

v» =< 2 if proposed tree is fully resolved and  (10)

the current tree is not the star tree
1 otherwise

The isolated 1 in the denominator of Equation 8 is the
Uniform density corresponding to the value u used to
choose the proposed new edge length.

where v* is the proposed new edge length, u is the Uni-
form random deviate chosen to generate the value v*,
and 6! is the mean of the exponential prior distribution
assumed here for edge lengths, which also serves as the
distribution from which new edge lengths are generated
during Add-edge moves.

The Delete-edge move.—This move (Fig. 3b) is called the
Delete-edge move because it results in the deletion of an
edge length parameter. One internal edge chosen at ran-
dom from all existing internal edges is removed entirely
from the tree, either creating a new polytomy or enlarg-
ing an already existing polytomy. The prior ratio for the
Delete-edge move is

TTn,m—1

_Tmmel 12
F0) nm -

Note that the edge length prior, f(v), is evaluated at
the current length of the edge being deleted, and that m
refers to the number of internal nodes in the tree before
the Delete-edge move. The Hastings ratio for the Delete-
edge move is calculated as follows:

Hastings ratio for Delete-edge move

__ Pr(reverse Delete-edge move)

13
Pr(Delete-edge move) (13)
() (7= =) )
) \ 2K =1 _fx 1
= va [ AL (14)
Vdlle
= 15
wy (2871 —k* —1) (15)
where
0.5 if current tree is fully resolved
and the proposed tree is
not the star tree
Vg = 2 if proposed tree is the star tree (16)

and the current tree
is not fully resolved

1 otherwise

k* refers to the the number of edges emanating from the
polytomy created (or enlarged) by the move, 1}, is the
number of polytomies in the tree after the move, and 7,
is the number of internal edges in existence before the
move.

The Delete-edge move, like the Add-edge move,
changes the dimension of the tree model, and the
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Jacobian term needed to correct for this is:

— 98—91)

7 17)

This is exactly the inverse of the prior ratio. The Jacobian
term cancels with the edge length prior ratio in both the
Add-edge and Delete-edge moves as long as the same
distribution is used for the edge length prior and the
generation of new edge lengths in Add-edge moves.

Prior Distributions for Tree Topologies

The tree topology prior ratios 7w, m,—1/7nm and
TTn,m+1/Tn,m, Which appear in Equations 5 and 12, can
take on many forms subject to the goals of the investiga-
tion. We suggest setting m;, ,—1/7m,m = C, where C > 0
is a constant that determines the “informativeness” of
the prior. If C = 1, the prior is flat: the star tree topology
has the same prior weight as any other particular tree
topology. If C > 1, the prior favors topologies with fewer
internal edges. In the four-taxon case, for C = 2, the star
tree topology would be twice as probable, a priori, as any
one of the three fully resolved tree topologies. Likewise,
if C < 1, tree topologies with more internal edges are fa-
vored. We refer to this as the polytomy prior to distinguish
it from the conventional prior, which allows only fully re-
solved tree topologies. The polytomy prior always gives
some prior weight to polytomous topologies, but adjust-
ing C allows flexibility in how the prior is apportioned.

In the four-taxon case just mentioned, the star tree has
twice the prior probability of any one of the three fully
resolved trees, but note that fully resolved trees as a class
still have more prior probability than the star tree. This
is because there are three tree topologies in the class hav-
ing two internal nodes, but only one tree topology in
the class having one internal node. It is possible to ad-
just the polytomy prior such that the number of topolo-
gies in each resolut1on class is taken into account. Setting
Tnm—1/Tnm = T” n€ y1elds aprior in which the constant C
specifies the pI'lOI‘ probab1hty of the class having m — 1in-
ternal nodes divided by the prior probability of the class
having m internal nodes. In the four-taxon case, using
this resolution class prior with C = 2 would give the star
tree topology a prior probability six times greater than
the prior probability of any one of the fully resolved trees:

4,1

74,2

T12C — (3)(2)
Tyy 1

-6 (18)

AN EMPIRICAL EXAMPLE

Shoup and Lewis (2003) performed Bayesian anal-
yses as well as maximum likelihood bootstrapping,
uncovering several instances of conflict between these
two approaches to measuring edge support. We chose
to reanalyze one clade in particular from this study

(the Chlamydomonadales) because it exhibited four
examples of edges with high posterior probabilities but
low bootstrap support. The original study included 46
taxa, but our reanalysis included only the 16 taxa in the
Chlamydomonadales plus Oedogonium cardiacum as the
outgroup. Shoup and Lewis (2003) used the GTR+T
model and results from two independent MrBayes runs,
each of length 1,010,000 generations and involving
four coupled chains. The first 10,000 iterations of each
run were discarded, and sampling was done every
100 generations thereafter to yield 20,000 sampled tree
topologies total. The original sequences comprised
3341 nucleotide sites (474 parsimony informative, 380
variable but parsimony uninformative) from combined
18S and 28S ribosomal RNA genes.

Our reanalysis of the Chlamydomonadales clade in-
volved three primary components: (1) maximum likeli-
hood bootstrapping; (2) a conventional MCMC Bayesian
analysis moving among fully resolved tree topologies
only; and (3) a reversible-jump MCMC analysis moving
among fully resolved as well as polytomous tree topolo-
gies as described above. The third component actually
involved five separate analyses, one each using the poly-
tomy prior withC = 1and C = ¢, and theresolution class
priorwithC = 1.1,C = 2,and C = 10. Except where oth-
erwise indicated, all analyses used software written by
POL and MTH.

ML bootstrapping—A tree obtained by neighbor-
joining was used to obtain maximum likelihood
estimates of the parameters of the HKY+I" model. These
estimates were transition/transversion rate ratio « =
3.317; shape parameter of the four-category discrete
Gamma distribution assumed for relative rates among
sites @ = 0.182; and relative base frequencies 74 = 0.247,
wc = 0.221, 7g = 0.268, and 7t = 0.264. These parame-
ter values were fixed for the duration of the 500-replicate
ML bootstrap analysis. This entire analysis was per-
formed using PAUP* 4.0b10 (Swofford, 2001).

Conventional MCMC.—A single Markov chain was run
2 x 10° generations after a 10° generation burn-in period.
The HKY+T model was used, with all model parame-
ters except edge lengths updated using the slice sampler
(Neal, 2003) every 50 generations. Branch lengths and
the tree topology were updated using the Metropolis-
Hastings proposal known as the Larget-Simon LOCAL
move (Larget and Simon, 1999; Holder etal., in revi-
sion). Trees and model parameters were sampled every
100 generations, yielding 2 x 10* samples. The topol-
ogy prior for this analysis was the conventional one: flat
across all fully resolved tree topologies and zero for tree
topologies with any number of polytomies. An exponen-
tial prior (mean 1.0) was applied to each edge length, the
transition/transversion rate ratio parameter «, and the
inverse of the shape parameter of the Gamma distri-
bution assumed for relative rates across sites «~!. The
inverse of the shape parameter equals the variance of
relative rates among sites because the scale parameter of
the Gamma distribution is chosen to make the mean rela-
tive rate 1.0. Using the variance (¢ 1) is more natural than
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using the shape («) to parameterize the Gamma distribu-
tion in a Bayesian setting because this parameterization
allows for the possibility of rate homogeneity (rate ho-
mogeneity corresponds to « = oo, which has infinitesi-
mal density under typical choices for prior distributions).
Variance is also a more intuitive measure of rate hetero-
geneity because it increases (rather than decreases) with
increasing rate heterogeneity.

Because they are constrained to sum to 1.0, a different
strategy was taken for updating base frequency param-
eters. Four continuous, non-zero parameters, fa, fc, fc,
and fr, were each given exponential priors (mean 1.0)
and updated individually by slice sampling. Base fre-
quencies needed for calculation of the likelihood were
generated by normalizing the f; parameters. That is,

o fi
= fa+ fc+ fe+ fr 19)

The exponential prior (mean 1.0) on each f; is equiv-
alent to placing a (flat) Dirichlet(1.0, 1.0, 1.0, 1.0) prior
directly on the relative base frequencies. The advantage
to treating relative base frequencies in this way is that no
special treatment is required (i.e., one does not need to
devise a multivariate proposal); the f; parameters can be
updated independently in exactly the same way as any
other substitution model parameter.

Reversible-jump MCMC.—The run conditions and
choices of substitution model priors for this analysis
were identical to those of the conventional MCMC anal-
ysis; however, this analysis attempted one of the two de-
scribed dimension-changing moves with probability 0.5
each generation. Five separate MCMC analyses were per-
formed, each using a distinct prior distribution on tree
topologies. One run employed the flat polytomy prior
(C = 1;all tree topologies have equal prior probability re-

gardless of resolution). A second run used the polytomy
prior with constant C equal to e ~ 2.71828. This value
for C makes the cost of adding an edge equal to one
log-likelihood unit. The three remaining runs used the
resolution class prior with C =1.1, C =2, and C =10,
respectively. The five prior probability distributions over
the 15 resolution classes for this 17-taxon analysis are
given in Table 2.

Despite the differences in taxon sampling, the use
of a simpler substitution model, and differences in the
MCMC analysis, the results for the Chlamydomonadales
clade are very similar between the original analysis of
Shoup and Lewis (2003) and our reanalysis. For the boot-
strap and conventional MCMC analyses, the only no-
table difference is that the posterior probability for the
Carteria/Heterochlamydomonas subclade (node 7 in Fig. 4)
was substantially higher (0.85) in the original study than
it is in our reanalysis (0.45). The remaining discussion
will focus exclusively on the reanalysis results because
these are all based on the same data and substitution
model and are thus comparable.

Five edges (1, 2, 3, 7, and 11 in Fig. 4) had very high
(>93%) posterior probabilities with conventional MCMC
and low (<72%) ML bootstrapping support. The pos-
terior probabilities for two of these edges (7 and 11)
dropped substantially when the reversible-jump MCMC
approach was used, regardless of which topological prior
was used. Two of the remaining three edges (2 and 3)
maintained high posterior probabilities, even when us-
ing prior distributions that strongly favor polytomous
tree topologies (Table 3). Edge 1 was the only edge
strongly influenced by the choice of topological prior:
its posterior probability varied from 0.41 to 0.91 depend-
ing on which topology prior was used. The three resolu-
tion class prior distributions explored range from weakly
favoring polytomies (C = 1.1) to very strongly favor-
ing polytomies (C = 10). The resolution class prior with

TABLE 2. The numbers of tree topologies and prior distribution across resolution classes for the five topology prior distributions used in
the empirical example. 1 is the number of internal nodes characterizing tree topologies in each resolution class and ranges from 1 (star tree) to
n—2 =17 — 2 =15 (fully resolved tree topologies). The first column contains the logarithm (base 10) of the number of distinct, unrooted tree
topologies T, in each resolution class for n = 17 taxa. The total number of tree topologies for n = 17 is 10"7¥7!, For the polytomy prior, two
separate values of the parameter C were considered: 1 (flat prior) and e (favors polytomies). For the resolution class prior, three separate values
of C were considered: 1.1 (weakly favors polytomies), 2, and 10 (strongly favors polytomies).

Polytomy prior Resolution class prior
Resolution
class (m) log,o(T,m) c=1 C=e CcC=11 cC=2 c=10
1 0.000000 0.000000 0.000000 0.125927 0.500015 0.900000
2 4.816361 0.000000 0.000000 0.113335 0.250008 0.090000
3 7.801126 0.000000 0.000001 0.102001 0.125004 0.009000
4 10.002016 0.000000 0.000047 0.091801 0.062502 0.000900
5 11.729312 0.000002 0.000931 0.082621 0.031251 0.000090
6 13.118317 0.000055 0.008388 0.074359 0.015625 0.000009
7 14.240733 0.000730 0.040907 0.066923 0.007813 0.000001
8 15.138396 0.005766 0.118896 0.060231 0.003906 0.000000
9 15.836311 0.028761 0.218166 0.054208 0.001953 0.000000
10 16.348281 0.093490 0.260894 0.048787 0.000977 0.000000
11 16.679054 0.200235 0.205562 0.043908 0.000488 0.000000
12 16.824003 0.279569 0.105584 0.039517 0.000244 0.000000
13 16.765475 0.244321 0.033945 0.035566 0.000122 0.000000
14 16.460717 0.121117 0.006190 0.032009 0.000061 0.000000
15 15.791711 0.025954 0.000488 0.028808 0.000031 0.000000
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FIGURE 4. Tree resulting from the conventional Bayesian analysis of the Chlamydomonadales clade from the Shoup and Lewis (2003) study.
The edge lengths are posterior means, and the topology is the 50% majority rule consensus tree. Node numbers indicated for the interior nodes
are the same as the node numbers in Table 3. The two edges circled are those strongly favored only by the conventional Bayesian MCMC
analysis; nonparametric maximum likelihood bootstrapping or Bayesian reversible-jump MCMC analyses (under a variety of topology prior

distributions) provide only weak support for these two edges.

C =2 and the polytomy prior with C = e fall between
these two extremes. The flat polytomy prior does not fa-
vor any particular polytomous topology more than any
particular full resolved topology, but we note that this
prior is not flat across resolution classes because of the
different numbers of tree topologies composing each res-
olution class. For this 17-taxon example, this prior on res-
olution classes induced by assuming the flat polytomy
prior actually favors the class of tree topologies having
m = 12 internal nodes most (fully resolved tree topolo-
gies have m = 15 internal nodes in this case).

These results suggest that two of the five edges of inter-
est may in fact be hard polytomies (or edges too short to
detect with the particular genes chosen). Two of the three

other edges of interest maintain high posterior probabil-
ities in the face of strong pressure (from the prior) to col-
lapse into polytomies. It is reassuring to see that biasing
the prior toward polytomous tree topologies does not re-
duce support in all cases. Such behavior would indicate
that biasing the prior simply reduces the power of the
analysis to detect non-zero-length edges when they do
in fact exist. We note that this study does not identify or
correct other potential problems. Branches that remain
strong after such an analysis may represent overcredi-
bility due to model violations (see Buckley, 2002), and
using the proposed reversible-jump MCMC algorithm is
not expected to ameliorate any effects caused by model
inadequacy.
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TABLE 3. Posterior split probabilities resulting from applying five different prior distributions for topologies (Table 2) to the Chlamydomon-
adales data. The first column identifies edges by the numbers used in Figure 4. The second and third columns are support values (expressed
as percentages) from a maximum likelihood bootstrap analysis (500 replicates) and conventional Bayesian MCMC analysis, respectively. In
the two edges 7 and 11, the posterior probability is substantially less under the reversible-jump MCMC method introduced here compared to

conventional MCMC that does not allow polytomies. All analyses used the HKY+I" model.

. Polytomy prior Resolution class prior
ML Conventional
Edge bootstrap MCMC C=1 C=e C=11 C=2 C=10
1 62 99 88 83 91 87 41
2 50 100 100 100 100 100 100
3 56 99 96 91 96 92 68
4 100 100 100 100 100 100 100
5 100 100 100 100 100 100 100
6 100 100 100 100 100 100 100
7 45 95 5 3 7 4 2
8 100 100 100 100 100 100 100
9 100 100 100 100 100 100 100
10 100 100 100 100 100 100 100
11 71 94 2 1 4 2 0
12 91 100 100 100 100 100 100
13 100 100 100 100 100 100 100
14 100 100 100 100 100 100 100

Convergence and Mixing

Our analysis of the Chlamydomonadales example
might be challenged in at least two ways. First, if the run
length used (2.1 x 10°) in the reversible-jump MCMC
analysis was not sufficient to accurately approximate the
posterior distribution, then the two polytomies identi-
tied may be artifacts of the failure to sample from a sta-
tionary chain. Second, the choice of prior distributions,
especially with respect to edge lengths, may have been
the primary reason for the high posterior probabilities
obtained for nodes 7 and 11. In this case, it is important
to check whether other reasonable prior distributions for
edge lengths produce the same results.

Assessment of mixing and convergence in the reversible-
jump MCMC analysis—We investigated the samples
produced from the MCMC analyses of the Chlamy-
domonadales example several ways to make sure that
the two polytomies identified with our new approach
were not simply an artefact of inadequate mixing or
failure of the chain to converge to the stationary dis-
tribution. To assess convergence with respect to substi-
tution model parameters (excluding edge lengths), we
computed potential scale reduction factors (Brooks and
Gelman, 1998). This measure (symbolized by R here) as-
sesses convergence by constructing a ratio of estimators
of the variance of sampled values from several indepen-
dent MCMC runs. The numerator is a pooled variance
estimator that combines within-chain and among-chain
variation, whereas the denominator is based only on
within-chain variation. If all of the parallel chains have
converged, samples taken from these chains will be sta-
tistically indistinguishable, and R will be close to 1.0. If
the chains have not been run long enough, estimates of
the variance of sampled values made from within-chain
variation will be smaller than estimates of the same quan-
tity made using variation among chains. In this case, R
will be greater than 1.0. Values of R less than 1.2 are gen-
erally considered acceptable (Gelman et al., 1995:332).

The R values computed for 10 replicate reversible-jump
MCMC analyses (using the “Flat” topology prior) are
all very close to 1.0, consistent with convergence. In
each analysis, the first half of the 2.1 x 106 samples were
discarded, yielding these potential scale reduction fac-
tors: R, = 0.9997592, R, = 0.9998576, Ry, = 1.0108441,
Ry, =1.0111435, Ry, = 1.0109623, and Ry, = 1.0110756.

Potential scale reduction factors only address conver-
gence in substitution model parameters, but perhaps of
more concern is mixing and convergence with respect to
topology. It is unlikely, but nevertheless possible, for a
Bayesian MCMC analysis to become quickly stuck on
a relatively improbable tree topology. All indications
(time-series plots of the log-likelihood or log-posterior,
potential scale reduction factors, etc.) may point to con-
vergence in such a case; however, the chain is far from
converged. Li et al. (2000) introduced scaled regenera-
tion quantile (SRQ) plots to assess mixing and conver-
gence for topologies. From an SRQ plot, it is possible to
see graphically whether subsequences of arbitrary length
and starting position would provide reaonable approx-
imations to the posterior probabilty obtained from the
complete sequence of samples. In an SRQ plot, the ab-
scissa records the ratio T;/ Ty, where T; is the number
of times the focal tree topology has been sampled up to
iteration i. Ty is the total number of times the focal tree
topology was sampled; the MCMC estimate of the pos-
terior probability of the focal tree topology is thus T/ N.
The ordinate records theratio i /N. The slope of the line in
an SRQ plot should ideally be close to 1.0 throughout. De-
partures from this indicate that at some points the chain
was on a trajectory that should have led to a different fi-
nal posterior probability. Especially worrying would be
a plot in which the slope was some value s for most of
the run, wheres # 1.0, then changed abruptly at the very
end. Figure 5 shows SRQ plots for the maximum poste-
rior probability (MPP) tree topology in the reversible-
jump MCMC analysis utilizing the flat polytomy prior.
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FIGURE 5. Scaled regeneration quantile (SRQ) plots showing ad-
equacy of topological mixing in the analysis involving a flat poly-
tomy prior. The topology tracked is the maximum posterior probability
topology, which is topology 1 in Table 4. This topology had posterior
probability 0.789 and was missing edges 7 and 11 from the tree topol-
ogy illustrated in Figure 4. The horizontal axis in each case is T;/ Ty,
where T; is the number of times the tree topology was sampled in
the first i samples. The vertical axis in each case is i/N, where i is
the sample and N the total number of samples considered. The first
1000 samples were discarded as burn-in, leaving 20,000 samples total.
(a) First 200 samples after burn-in. (b) First 2000 samples after burn-in.
(c) All 20,000 samples after burn-in.

This tree topology, which is identical to the majority rule
consensus tree shown in Figure 4, captured nearly 80% of
the posterior probability. The SRQ plot produced for the
entire run (Fig. 5¢) is close to ideal, and the plot created

TABLE4. Summary of the tree topologies composing the 95% cred-
ible set from the analysis involving a flat polytomy prior. The posterior
probabilities of the 5-tree topologies listed sum to 0.9587. The number
of samples (out of 20,000 total) in which a topology was found is given
in the column labeled “Frequency.” A sojourn is a consecutive series of
samples in which only the topology of interest was found. The number
of sojourns is thus the number of times the topology appeared in the
sequence of samples immediately following a different topology. All
of the topologies in the 95% credible set were identical to the topology
shown in Figure 4 except for one or more missing edges, which are
listed in the last column.

Posterior
Topology Frequency probability

Number of Maximum Average Edges
sojourns sojourn  sojourn missing

1 15,958 0.798 588 148 27.1 7,11
2 1,996 0.100 166 68 120 1,7, 11
3 489 0.024 286 8 1.7 11

4 374 0.019 162 12 2.3 7

5 357 0.018 37 40 96 3,711

for the first 200 and 2000 post-burn-in samples (Fig. 5a
and b, respectively) is very reasonable.

Relevant to the question of mixing is how many times
the chain returned to the focal tree after having left
it to visit a different topology. Table 4 provides sum-
mary information about sojourns made by the MPP
tree topology as well as the other four topologies com-
posing the 95% credible set. This shows that the chain
returned to the MPP topology at least 587 separate
times and stayed on the MPP topology on average only
27.1 samples before switching to a different topology.
This ability to leave and then return repeatedly to the
same topology suggests good mixing with respect to
topologies.

Assessment of alternative edge length priors in the con-
ventional MCMC analysis—In many previous stud-
ies in which suspiciously large posterior probablities
have been estimated for relatively short edges (Alfaro
et al., 2003; Douady et al., 2003; Cummings et al., 2003),
MrBayes (Huelsenbeck and Ronquist, 2003) was used
with the default edge length priors, which were Uni-
form distributions with large means (e.g., 5.0 for ver-
sion 1.1). The concern is that such a large prior mean
might amplify weak support for one possible resolu-
tion of a polytomy, producing what seems to be sur-
prisingly high estimates of the posterior probability of
an edge. To address the concern that using a different
edge length prior might have produced results similar
to those obtained using the reversiblejump approach,
we performed additional conventional MCMC analy-
ses using different means for the exponential prior on
edge lengths. The results detailed in Table 2 used a
prior mean edge length of 1.0. Because 1.0 is longer
than most empirical edge length estimates, we tried
setting the prior mean to shorter values, specifically
0.1 and 0.01. These had no effect on the majority rule
consensus topology and did not substantially reduce
the posterior probabilities of the two edges (7 and 11)
of interest. For edge 7, the posterior probabilities for
means 1.0, 0.1, and 0.01 were 0.95, 0.95, and 0.96, re-
spectively. For edge 11, the posterior probabilities for
means 1.0, 0.1, and 0.01 were 0.94, 0.94, and 0.95,
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respectively. All aspects of these analyses were identical
to the original with the exception of the prior distribution
assumed for edge lengths.

Suchard et al. (2001) employed a hierarchical model in
which a parameter u governed the mean of the expo-
nential edge length prior distribution. In this approach
the u parameter automatically tunes the edge length
prior distribution so that its mean is appropriate for
the data being analyzed. Although a fully Bayesian ap-
proach, this has an effect similar to an empirical Bayes
analysis in which the maximum likelihood estimate of
the mean edge length is used to specify the mean of
the edge length prior distribution. The advantage of the
fully Bayesian model is that uncertainty in p itself is
accommodated. We investigated adding the hyperpa-
rameter u to our model and, following Suchard et al.
(2001), using an Inverse Gamma prior on u with
mean 1 and variance 10. The posterior mean of u
was 0.059 (standard deviation 0.011), and this analy-
sis produced posterior probabilities for edges 7 and
11 of 0.94 and 0.95, respectively. Thus, using a hyper-
prior for edge lengths also did not affect the results
of the original analysis, which fixed the prior mean
to 1.0.

A SIMULATION EXAMPLE

The empirical example begs the question “Just how
short can an edge be and still be detected by a reversible-
jump MCMC that strongly favors polytomous tree
topologies?” To address this question, a series of data
sets were simulated using the MPP tree from the Chlamy-
domonadales example as the model tree. Maximum like-
lihood estimates under the HKY model were used for all
edge lengths except the deeper of the two edges that col-
lapsed in the empirical example. This edge (i.e., edge
7 in Fig. 4) was varied among simulations, with 100
data sets simulated (using Seq-gen version 1.2.6; Ram-
baut and Grassly, 1997) for each of the following five
lengths for this edge: 0.0 (representing a true hard poly-
tomy), 0.0006,0.0012,0.0018, 0.0024, and 0.003 (measured
as expected number of substitutions per site). These val-
ues are multiples of 0.0003 (=~ 1/3341), which is the edge
length providing for, on average, one change per data
set along the edge of interest. Note that because edge
lengths represent expected amounts of change, an edge
length of 0.0003 does not guarantee that a change will
occur on the edge of interest in every simulated data
set, nor does it guarantee that sites where changes do
occur will be free from homoplasy. The simulated data
sets were of the same size as the original data (17 taxa,
3341 sites), and the polytomy prior (with C = e) was used
with reversiblejump MCMC for analysis. The results
(Fig. 6) show that for an edge to be reliably detected,
it must be long enough that several sites are expected to
change across the edge. Figure 6 demonstrates that 10
expected substitutions per data set is sufficient to virtu-
ally ensure detection in this case. The analysis could be
made less conservative by using a flat polytomy prior
(C=1).
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FIGURE 6. Box plot showing performance of the reversible-jump
MCMC approach with the polytomy prior (C = ¢) at detecting short
edge lengths. The length of edge 7 in the tree of Figure 4 was varied
from 0.0 to 0.003 in increments of 0.0006. For each of these edge lengths,
100 simulated data sets were generated using the HKY85 model with
all other parameters (i.e., base frequencies, other edge lengths, transi-
tion/transversion rate ratio) set to their maximum likelihood estimates
based on the actual sequence data. Sequence length for the simulated
dataset was the same (3341 sites) as the actual data. The open box for
each edge length depicts the 25th (bottom edge), 50th (middle line),
and 75th (top edge) percentiles, whereas the whiskers extend down to
the 10th and up to the 90th percentiles. The filled box represents the
mean posterior clade probability over the 100 replicates.

CONCLUSION

The use of Bayesian MCMC methods that preclude
polytomous topologies can lead to high posterior proba-
bilities for arbitrary resolutions of hard polytomies, or for
internal edges in which the expected number of changes
is very small. It is important to point out that high poste-
riors in such cases are not the rule, but the use of majority
rule consensus trees to summarize the posterior distribu-
tion in Bayesian phylogenetics ensures that such edges
will attract the attention of the investigator, which makes
this phenomenon of some concern.

Fortunately, there is a simple solution to the prob-
lem. The Green modification to the Metropolis-Hastings
algorithm used widely in Bayesian MCMC analyses
allows less-resolved tree topologies containing one or
more polytomies to compete with fully resolved tree
topologies for posterior probability. If tree topologies
containing polytomies can attain high posterior proba-
bilities, support will be removed from fully resolved tree
topologies representing arbitrary resolutions of the poly-
tomy. Furthermore, the solution described here requires
only slightly more computational effort than the cur-
rent approaches that consider fully resolved tree topolo-
gies only. Using prior distributions that strongly favor
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polytomous tree topologies over fully resolved tree
topologies provides a conservative approach that re-
duces spurious high posterior probabilities in cases of
true polytomies (or edges too short to be detected) with-
out compromising the ability to correctly identify and
strongly support short but real edges in the true tree.

The Bayesian approach to phylogenetic inference has
been characterized by an exceptional growth in popu-
larity. It is to be expected that once a new methodology
becomes widely used, problems will surface that previ-
ously went unnoticed simply because of their low fre-
quency of occurrence. The first reflex is often to point
out such problems and argue that the entire methodol-
ogy be abandoned (e.g., Suzuki et al., 2002), but the fact
that Bayesian analyses have made possible the use of
the most realistic evolutionary models ever developed
provides ample reason to work instead toward finding
solutions to problems when they arise.
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