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Suman Neupane1, Karolina Fuč́ıková1, Louise A. Lewis1, Lynn Kuo2, Ming-Hui Chen2, and Paul2

O. Lewis13

1 Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville4

Road, Unit 3043, Storrs, Connecticut 06269, U.S.A.5

2 Department of Statistics, University of Connecticut, 215 Glenbrook Road, Unit 4120, Storrs,6

Connecticut 06269, U.S.A.7

Corresponding author: Paul O. Lewis, Department of Ecology and Evolutionary Biology,8

University of Connecticut, 75 N. Eagleville Road, Unit 3043, Storrs, Connecticut 06269, U.S.A.;9

Tel: +01 860 486-2069; FAX: +01 860 486-6364; E-mail: paul.lewis@uconn.edu10

1



ABSTRACT. With the rapid reduction in sequencing costs of high-throughput genomic11

data, it has become commonplace to use hundreds of genes/sites to infer phylogeny of any study12

system. While sampling large number of genes has given us a tremendous opportunity to uncover13

previously unknown relationships and improve phylogenetic resolution, it also presents us with14

new challenges when the phylogenetic signal is confused by differences in the evolutionary15

histories of sampled genes. Given the addition of accurate marginal likelihood estimation methods16

into popular Bayesian software programs, it is natural to consider using the Bayes Factor (BF) to17

compare different partition models in which genes within any given partition subset share both18

tree topology and edge lengths. We explore using marginal likelihood to assess data subset19

combinability when data subsets have varying levels of phylogenetic discordance due to deep20

coalescence events among genes (simulated within a species tree), and compare the results with21

our recently-described phylogenetic informational dissonance index (D) estimated for each data22

set. BF effectively detects phylogenetic incongruence, and provides a way to assess the statistical23

significance of D values. We discuss methods for calibrating BFs, and use calibrated BFs to assess24

data combinability using an empirical data set comprising 56 plastid genes from green algae order25

Volvocales.26

Keywords: Bayes Factor, concatenation, marginal likelihood, phylogenetic dissonance,27

phylogenetics, phylogenomics, Lindley’s Paradox28
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INTRODUCTION29

Until recently, common practice for inferring multi-gene phylogenies involved30

concatenation of all available genes with an assumption that the evolutionary histories of all31

sampled genes were identical. However, phylogenetic trees for different genes (gene trees) can32

differ from each other, from the tree inferred from the concatenated data, and from the true33

species tree, due to evolutionary events/processes such as incomplete lineage sorting (ILS),34

horizontal transfer, and hybridization (Maddison, 1997; Edwards, 2009; Degnan and Rosenberg,35

2009; Mallet et al., 2016). Further, even if the sampled genes share the same evolutionary history,36

estimated trees can differ because of: (1) insufficient phylogenetic information in the sampled37

genes (stochastic or sampling error), or (2) model misspecification (systematic error) leading to,38

for example, long edge attraction in some gene trees and not in others (Swofford et al., 1996;39

Philippe et al., 2005, 2011).40

With the recent surge of large-scale genomic DNA data from high-throughput sequencing41

methods, the issue of phylogenetic incongruence has become even more important in phylogeny42

reconstruction. Inferring species trees by addressing these challenges has become an area of active43

research in phylogenetics. Several species tree methods already available (reviewed in Liu et al.,44

2015) are effective in correcting incongruences due to deep coalescence (e.g. Song et al., 2012; Xi45

et al., 2014; Jarvis et al., 2014; Tang et al., 2015). These methods estimate a species tree either46

from multiple sequence alignments (e.g. *BEAST, Heled and Drummond, 2010; BEST, Liu et al.,47

2008; SVDquartets, Chifman and Kubatko, 2014, 2015) or summary statistics calculated from48
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estimated gene trees (e.g. STEM, Kubatko et al., 2009; MP-EST, Liu et al., 2010; BUCKy, Ané49

et al., 2007; ASTRAL, Mirarab et al., 2014b). Methods such as *BEAST and BEST50

simultaneously estimate gene trees and the species tree by using MCMC to integrate over trees51

and substitution model parameters; however, co-estimation of species and gene trees under a52

multispecies coalescent model is computationally intensive and cannot be applied to large scale53

genomic data. On the other hand, fast and efficient summary statistic methods (e.g. Mirarab54

et al., 2016) that completely rely on the estimated gene tree/trees (partial data) for the55

downstream species tree estimation may be prone to systematic bias as they do not incorporate56

uncertainty in the gene tree estimation process. Still lacking is a comprehensive approach that57

employs both a rigorous and more efficient algorithm to estimate species trees with high accuracy58

from hundreds of loci by addressing not just one (e.g. ILS) but all sources of phylogenetic59

incongruence (Posada, 2016). Until such methods are widely available, there is a need to at least60

identify phylogenetically congruent sets of loci among sampled genes. Phylogenies from congruent61

sets of genes may then be used to estimate a species phylogeny (cf. statistical binning, Mirarab62

et al., 2014a). Furthermore, identifying genes that are significantly incongruent may also be used63

to identify sequences resulting from processes other than the standard vertical inheritance model64

assumed in most phylogenetic analyses.65

Phylogenetic dissonance.— Lewis et al. (2016) introduced Bayesian methods for66

measuring the phylogenetic information content of data and for measuring the degree of67

phylogenetic informational dissonance among data subsets. Phylogenetic dissonance is relevant to68

the problem of identifying congruent subsets of loci. When data are partitioned into subsets69
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(corresponding to, for example, genes or codon positions), such tools yield insight into which data70

subsets have the greatest potential for producing well supported estimates of phylogeny. Conflict71

between different subsets with respect to tree topology can lead to paradoxical results with72

respect to both information content and estimated phylogeny. For example, a tree topology73

minimally supported by all subsets (posterior probability less than 0.2) may be given maximal74

support (posterior probability 1.0) in a concatenated analysis if each subset is highly informative75

and effectively rules out the trees most supported by other subsets (Lewis et al., 2016). The76

information measure D (phylogenetic dissonance) was introduced by Lewis et al. (2016) to77

specifically identify such anomalies. Phylogenetic dissonance is defined as78

D̂ = Ĥmerged − Ĥaverage (1)

Ĥaverage =
1

K

K∑
k=1

Ĥk, (2)

where Ĥk is the entropy of the marginal tree topology posterior distribution for data subset k (of79

K subsets), and Ĥmerged is the entropy of a posterior distribution estimated from a merged tree80

sample. Posterior tree samples from separate analyses of each data subset are combined to form81

the merged tree sample. (Note that this merged tree sample differs from a tree sample obtained82

from a concatenated analysis.) If different data subsets strongly support mutually exclusive tree83

topologies, then the average entropy of marginal tree topology posterior distributions (Ĥaverage)84

will be small while the merged entropy (Ĥmerged) will be relatively large due to the fact that85

topology frequencies are more evenly distributed in the merged sample compared to samples from86

individual subsets, which are each dominated by one tree topology. Lewis et al. (2016) defined87

and estimated phylogenetic dissonance using this entropy-based measure, but how to evaluate the88
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statistical significance of a given level of phylogenetic dissonance remains an open question.89

Tests for Phylogenetic Dissonance.— The only direct tests of phylogenetic90

congruence proposed to date are likelihood ratio tests (LRTs). Huelsenbeck and Bull (1996)91

proposed a parametric bootstrapping approach in which the null hypothesis constrained all data92

subsets to have the same tree topology, while the alternative (unconstrained) hypothesis allowed93

each subset to have a potentially different tree topology. The distribution of the test statistic was94

generated by simulating data sets under the null hypothesis using maximum likelihood estimates95

of all model parameters and computing the test statistic under each simulated data set.96

Non-parametric boostrapping, in conjunction with LRTs, was used by Leigh et al. (2008)97

to test the same null hypothesis. Leigh et al. (2008) also proposed clustering of data subsets based98

on pairwise LRT results to generate compatible sets. Separate likelihood ratio tests were also99

proposed by Leigh et al. (2008) to test for heterotachy: in this case the null hypothesis constrains100

edge lengths to be proportionally identical across subsets, while the alternative hypothesis allows101

each subset to potentially have different edge lengths. The software CONCATERPILLAR (Leigh102

et al., 2008) may be used to carry out these non-parametric bootstrapping LRTs.103

These likelihood ratio tests are well justified and are the best available means to assess104

congruence when there are no priors involved in the tree estimation process. However, when the105

phylogeny estimation involves Bayesian methods, then evaluation of congruence should properly106

account for the effects of the assumed prior distributions. We propose a Bayesian approach to107

testing phylogenetic congruence (or, equivalently, dissonance) by comparing the marginal108
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likelihoods of competing models. When only two models are compared, the ratio of marginal109

likelihoods is termed the Bayes Factor (BF). Our approach is comparable to that of Leigh et al.110

(2008), but instead of comparing maximized log-likelihoods of competing models using LRTs, we111

use marginal likelihoods and their ratio (BF) for model comparison. Our approach is made112

possible by the recent improvements in marginal likelihood estimation (stepping-stone, SS: Xie113

et al., 2010, Fan et al., 2011; path-sampling, PS: Lartillot and Philippe, 2006; partition weighted114

kernel estimator, PWK: Wang et al., 2017) for phylogenetic model selection. The SS and PS115

estimators substantially outperformed other approaches (e.g. harmonic mean estimator, HME,116

and a posterior simulation-based analog of Akaikes information criterion through Markov chain117

Monte Carlo, AICM) for comparing models of demographic change and relaxed molecular clocks118

(Baele et al., 2012). Recently, Brown and Thomson (2016) also used BF to analyze the sensitivity119

in clade resolution to the data types used to infer the topology. The primary aim of our study is120

to evaluate the effectiveness of BF for assessing significance of the phylogenetic dissonance121

measure D (equation 1). We explore the behavior of BF using simulations designed to create a122

spectrum of 10-gene data sets ranging from low to high information content and from complete123

topological concordance to extreme discordance (due to deep coalescence and subsequent124

incomplete lineage sorting). We also provide an empirical example involving concordance of125

nuclear and plastid genes in the green algal order Volvocales which demonstrates that likelihood126

ratio tests carried out using CONCATERPILLAR can differ from conclusions based on marginal127

likelihoods when analyses are performed in a Bayesian context.128
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MATERIALS AND METHODS129

Bayes Factors.— In Bayes’ Rule,130

p(τ,ϕM |y,M) =
p(y|τ,ϕM ,M) p(ϕM |τ,M) p(τ |M)∑

τ p(τ |M)
∫
p(y|τ,ϕM ,M) p(ϕM |τ,M) dϕM

,

the denominator represents the marginal likelihood p(y|M): the total probability of data131

y given model M , averaged over tree topology τ and a multivariate parameter vector ϕM132

comprising model parameters. The parameters composing ϕM may be tree-specific (e.g. edge133

lengths) or substitution-model-specific (e.g. transition/transversion rate ratio). Data y is a vector134

comprising observed patterns of states for all taxa for individual characters (sites in the case of135

sequence data). Considering two models, (M1, M2), and their marginal likelihoods, p(y|M1) and136

p(y|M2), respectively, the BF B12 is the ratio p(y|M1)/p(y|M2). The BF on the log-scale is137

calculated as:138

logB12 = log p(y|M1)− log p(y|M2),

where logB12 > 0 signifies that model M1 is preferred over M2. By preferred, we mean that139

model M1 fits the data better on average than model M2 over the parameter- and tree-space140

defined by the prior. Applying this approach to the problem of phylogenetic congruence, consider141

data from a set of K loci y (y1, y2,...yK), and two models, CONCATENATED and SEPARATE.142

The CONCATENATED model represents the marginal likelihood of the concatenated set (yC) in143

which all loci are forced to have the same topology and model parameters (ϕM ),144

p(y|M = CONCATENATED) =
∑
τ

p(τ)

∫
p(yC |τ,ϕM ) p(ϕM ) dϕM , (3)
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whereas the SEPARATE model represents the marginal likelihood for a model in which individual145

loci are allowed to have their own topologies and model parameters (ϕM 1, ϕM 2..., ϕMK),146

p(y|M = SEPARATE) =

K∏
k=1

(∑
τk

p(τk)

∫
p(yk|τk,ϕMk) p(ϕMk) dϕMk

)
. (4)

The BF for CONCATENATED against SEPARATE is defined147

BCS =
p(y|M = CONCATENATED)

p(y|M = SEPARATE)
.

When the tree topology prior is discrete uniform,148

BCS =
NK−1

T

∑
τ

∫
p(yC |τ,ϕM ) p(ϕM ) dϕM∏K

k=1

(∑
τk

∫
p(yk|τk,ϕMk) p(ϕMk) dϕMk

) ,
where NT equals the number of distinct labeled tree. Here, BCS > 1 (or equivalently logBCS > 0)149

indicates that the CONCATENATED model (numerator) is preferred over the SEPARATE150

model (denominator), whereas BCS < 1 (logBCS < 0) indicates the reverse (i.e. SEPARATE151

model is the preferred model).152

A third, intermediate model HETERO links topology across subsets but allows edge

lengths to vary between single-gene data sets:

p(y|M = HETERO) =
∑
τ

p(τ)
K∏
k=1

(∫
p(yk|τ,ϕMk) p(ϕMk)dϕMk

)
.

While BF may be defined between any pair of models, and while we continue to describe our153

approach as using Bayes Factors, in practice we will only implicitly compute BF, instead154

estimating the log marginal likelihood of each of the three models and declare the winning model155

as the one having the largest of the three log marginal likelihood values.156
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Data Simulation.— Gene trees were simulated within species trees using parameter157

combinations that yielded differing levels of phylogenetic incongruence. Using a Python script158

(source code provided in Supplementary Materials), one thousand 6-taxon species trees were159

generated under a pure-birth (Yule) process in which the tree height T (expected number of160

substitutions along a single path from root to tip) was drawn from a Lognormal(0.05, 0.22)161

distribution (mean 1.08, 95% of samples between 0.68 and 1.62). Ten gene trees were simulated162

within each species tree using coalescent parameter θ = 4Neµ, where Ne is the effective (diploid)163

population size and µ is the mutation rate per generation. For each species tree, the ratio θ/T164

was drawn from a Lognormal(0.60, 0.77) distribution (which has mean 2.45 with 95% of samples165

between 0.40 and 8.24) and θ was determined by multiplying this ratio by the value of T used for166

a specific species tree. Increasing θ relative to T results in a higher number of deep coalescences,167

causing increased discordance among the gene trees.168

The gene trees thus generated were subsequently used to simulate DNA sequence169

alignments of length 2000 sites using seq-gen (Rambaut and Grass, 1997) under the HKY+G170

model. Individual single-gene datasets and the concatenated dataset were used to compute171

marginal likelihoods using the Stepping-stone method (Xie et al., 2010) implemented in MrBayes172

(Ronquist et al., 2012). For the concatenated dataset, two marginal likelihoods were estimated by173

enforcing: (1) the same topology and edge lengths for all sites (CONCATENATED model), and174

(2) the same topology but allowing edge lengths to vary among single-gene data subsets to175

account for non-topological gene tree variation (HETERO model). Analyses of single-gene data176

sets alone yielded marginal likelihoods that, when multiplied together, yield the marginal177
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likelihood under the SEPARATE model.178

In order to assess the robustness of BF for detecting topological and edge length179

congruence, the BF results were evaluated with respect to the phylogenetic information content180

(I) and phylogenetic dissonance (D) values computed using Galax v1.0.0 (Lewis et al., 2016).181

Estimation of I and D uses conditional clade probabilities (Larget, 2013) to estimate Shannon182

entropy (Shannon, 1948), from which Î is calculated simply as a difference between the entropies183

of the marginal prior and marginal posterior distributions of tree topology (Lindley, 1956). The184

phylogenetic dissonance is defined as in equation (1), and thus D̂ is computed as the entropy of185

the merged tree sample minus the average entropy of tree samples from individual genes. We also186

tested the strength of different variables including D̂ (and their combinations) in discriminating187

SINGLE vs. CONCATENATED model by conducting a linear discriminant analysis (LDA). The188

LDA was carried out in R using the ’lda’ function available in the library MASS (Venables and189

Ripley, 2002) for all the predictor variables (number of conflicting nodes, number of variable sites,190

number of parsimony informative sites, θ/T , species tree height/shortest gene tree height, species191

tree height/longest gene tree height, average information content, D, and number of deep192

coalescences).193

Phylogenetic dissonance is expected to be zero for comparisons of independent MCMC194

samples from the same posterior distribution, and thus provides a sensitive measure of MCMC195

convergence with respect to tree topology (Lewis et al., 2016). We replicated each single-gene and196

concatenated MCMC analysis and computed D̂ for these paired samples as a way of ensuring that197

post burn-in MCMC sample size was sufficient for convergence.198
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Lindley’s Paradox.— The tendency of Bayes Factors to prefer a sharp null hypothesis199

(e.g. a point mass prior) over an a priori diffuse (e.g. noninformative) alternative hypothesis200

when a classical frequentist hypothesis test would reject the null hypothesis is known as Lindley’s201

Paradox (Jeffreys, 1939; Lindley, 1957). The BF is identical to the posterior model odds given202

equal model prior probabilities. Giving both the sharp null hypothesis and the diffuse alternative203

hypothesis equal prior weight provides a distinct advantage for the null hypothesis as long as the204

null hypothesis represents a better explanation of the data compared to most parameter values205

supported by the alternative hypothesis. The amount of this advantage grows with the a priori206

diffuseness of the alternative hypothesis.207

Consider the BF for CONCATENATED against SEPARATE models. Equation (3) shows208

that the marginal likelihood of the CONCATENATED model contains a term p(τ) that equals209

the prior probability of the tree topology shared among all data subsets. Assuming a discrete210

uniform prior distribution over tree topologies, p(τ) is a constant equal to 1/NT . Equation (4)211

shows that the corresponding term in the marginal likelihood for the SEPARATE model is212

(1/NT )
K , reflecting the fact that each of the K genes potentially has a different tree topology. As213

either NT or K increases, the CONCATENATED model becomes increasingly sharp compared to214

the SEPARATE model with respect to prior distributions and thus Lindley’s paradox must be215

taken into consideration given a sufficiently large number of taxa and/or data subsets. In other216

words, for large trees or large number of genes, or both, assuming a common tree for all genes217

may provide a better explanation, even if incorrect in some details, than allowing each gene to218

have its own tree topology (and independent set of edge lengths). Here, model fit is viewed from219

12



the Bayesian perspective and is thus more appropriately described as average fit. It is the fact220

that model fit is averaged over a very large number of incorrect trees, each considered equal by221

the prior, that drags down the marginal likelihood of the SEPARATE model.222

Using BF for testing data combinability must keep the possibility of Lindley’s Paradox in223

mind. Fortunately it is not difficult to determine if Lindley’s Paradox applies: if the likelihood224

ratio test approach chooses the SEPARATE model but BF chooses CONCATENATE, this225

provides a strong hint that it is the vagueness of the prior in the SEPARATE model that is226

tipping the balance. While this is less a paradox than a difference in Bayesian vs. Frequentist227

perspective, a researcher may nevertheless wish to lessen the impact of the tree topology prior on228

the model choice decision.229

While the prior distributions for edge lengths and substitution model parameters are230

potentially relevant to Lindley’s paradox, these parameters are not directly involved in the test231

and are integrated out of both numerator and denominator in the BF calculation. Bergsten et al.232

(2013) identified similar issues related to diffuse tree topology priors in BF used for testing233

monophyly. In that case, constraints placed on tree topologies to enforce monophyly affect the234

size of tree space, which creates an imbalance in tree topology priors analogous to that235

encountered when testing for data combinability.236

BF Calibration.— It is standard practice to use the value BF = 1 as the critical value237

determining whether the null model (e.g. CONCATENATED) or the alternative model (e.g.238

SEPARATE) wins. This makes sense when the prior predictive error probabilities of BF under239
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both models are equal; however, in cases where models differ substantially in their effective240

dimensions, the distributions of the BF for the two models being compared may not be241

symmetrical. For example, it is possible that the probability of choosing the CONCATENATED242

model when the SEPARATE model is true may not equal the probability of choosing the243

SEPARATE model when the CONCATENATED model is true:244

p(BCS1|SEPARATE) ̸= p(BCS1|CONCATENATED).

Under such circumstances, a different threshold value (other than 1) can be selected such that the245

probability of choosing the incorrect model under both hypotheses is equal. Garćıa-Donato and246

Chen (2005) suggested a method for calibrating the BF that makes the prior predictive error247

probabilities symmetrical. To apply the method of Garćıa-Donato and Chen (2005), we simulated248

1000 replicate 6-taxon, 10-gene data sets (2000 sites/gene) from the joint prior distribution of249

each model (CONCATENATED and SEPARATE). For the CONCATENATED model, data for250

all 10 genes were simulated from a single topology sampled from the discrete uniform topology251

prior. For the SEPARATE model, data for each of the 10 genes was simulated from topologies252

separately sampled from the discrete uniform topology prior. All other model parameters were253

simulated from their respective prior probability distributions.254

For each simulated data set, BCS was computed, yielding a sample of 1000 values from255

the prior predictive BF distributions for both the CONCATENATED and SEPARATE models.256

The 2000 sampled BF values were combined into a single vector and sorted, and the critical value257

c was chosen as the midpoint between the 1000th and 1001th values in the sorted vector. This258
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procedure identifies a BF cutoff value c that satisfies259

p(BCSc|SEPARATE) = p(BCSc|CONCATENATED).

The simulations needed for BF calibration were carried out using PAUP* 4a158 (Swofford, 2003).260

Example from the Green Algal Order Volvocales.— We tested phylogenetic261

congruence among 56 protein-coding plastid genes used in Fuč́ıková et al. (2016), focusing on one262

of the most topologically consistent parts of the tree, the green algal order Volvocales. The263

Volvocales dataset consisted of a subset of the Sphaeropleales, Vovocales, and OCC264

(Oedogoniales- Chaetopeltidales- Chaetophorales) clades studied in Fuč́ıková et al. (2016). We265

included four of the five Volvocales members from the study: Chlamydomonas reinhardtii,266

Gonium pectoral, Pleodorina starrii, and Volvox carteri. The length of post-trimmed plastid genes267

ranged from 93 sites (psbT) to 2259 sites (psaA). We conducted BF tests for all possible pairs268

from the 56 genes (by estimating marginal likelihoods under the CONCATENATED and269

SEPARATE models) used in the study with the aim to detect possible outlier genes that may be270

present among the sampled genes for the concatenated phylogeny. The critical value c for this271

analysis was computed using the same approach as simulated data. The prior predictive272

distributions of BF under CONCATENATED and SEPARATE models were obtained from 1000273

replicates (4-taxon, 2 genes/replicate, and 2000 sites/gene) simulated under each model using274

PAUP 4a158 (Swofford, 2003). For the CONCATENATED model, DNA sequence data for both275

genes were simulated from a single topology (randomly drawn from the discrete uniform topology276

prior) with edge lengths and other model parameters drawn from the GTR+G model prior277

distribution, whereas for the SEPARATE model, sequence data for each of the 2 genes were278
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Parameters of the models and the priors used in the study of simulated (model: HKY+G)

and Volvocales (model: GTR+G) data were:

Tree topology τ ∼ Discrete Uniform(1, T )

Tree length L ∼ Exponential(0.1)

Edge length proportions e ∼ Dirichlet(1, · · · , 1)

Nucleotide frequencies π ∼ Dirichlet(1, 1, 1, 1)

transition/transversion rate ratio κ ∼ Beta(1, 1)

Exchangeabilities r ∼ Dirichlet(1, 1, 1, 1, 1, 1)

Discrete Gamma shape α ∼ Exponential(1),

where T equals the total number of distinct, labeled, binary, unrooted tree topologies.283

RESULTS284

Bayes Factor Calibration For Simulation Study.— BF calibration for the 6-taxon,285

10-gene simulation study resulted in a critical value c = −3.2 (log scale), which equals the286
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280 parameters drawn from the GTR+G model prior distribution. In order to compare our results 

281 with the likelihood-based approach, we also tested congruence among these 56 genes using 282 

CONCATERPILLAR (Leigh et al., 2008) using its topological congruence test (-t) option.



midpoint in the interval extending from the 1000th element (-3.55) to the 1001st element (-2.85) of287

the combined, sorted vector of prior predictive logBCS values from CONCATENATED and288

SEPARATE models. Using the standard log-BF cutoff (0.0) would thus result in the SEPARATE289

model winning more often when CONCATENATED is the true model than the290

CONCATENATED model wins when the SEPARATE model is true.291

Phylogenetic Dissonance Correlated with Number of Deep Coalescences.— As292

expected, estimated phylogenetic dissonance (D̂) was correlated with number of deep coalescences293

in 1000 simulated gene sets (10 genes/set) representing various degrees of topological and edge294

length congruence (Fig. 2). The number of deep coalescences varied from the minimum possible295

number (0) to the maximum possible number (50). (The maximum number of deep coalescences296

is 5 per gene because there are 5 internal nodes in a rooted tree of 6 taxa.)297

In our simulations, under both criteria (c = 0, c = -3.2), the SEPARATE model won in a298

majority of replicates when D̂ > 1.2 or when the number of deep coalescences exceeded 1.8 per299

gene. Under the new critical value (c = -3.2), 1 simulation replicate switched its support to the300

CONCATENATED model from the earlier SEPARATE or HETEROTACHY model. When301

SEPARATE failed to have the largest log marginal likelihood, CONCATENATED usually won,302

with HETERO only achieving the largest log marginal likelihood if D̂ < 1.2 and the number of303

deep coalescences was less than 3.2 per gene.304

In cases of multiple deep coalescences (>3.2/gene) or high dissonance D̂ > 1.3, the305

CONCATENATED model won only when average information content was low, while HETERO306
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never won under these circumstances. In a few cases, SEPARATE was the winning model even307

when the number of deep coalescences was less than 1 per gene on average. Conversely,308

CONCATENATED was occasionally the winner despite high levels of deep coalescence (> 3.5 per309

gene).310
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Figure 1: Density of BCS under CONCATENATED (blue line) and SEPARATE (red line) models

for the (a) 6 taxa, 10-gene data set and (b) 4 taxa 2-genes data set. The critical values (c = -3.2, c

= -1.52) are indicated by dashed lines, estimated using 1000 prior predictive replicates from each

model (rug).
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Figure 2: Plot of 1000 replicates simulated under conditions that yielded varying levels of deep

coalescence (x-axis) and phylogenetic dissonance D̂ values (y-axis). Blue circles indicate Bayes

Factor support for the CONCATENATED model over both HETERO and SEPARATE with log-

scale critical value c = 0. Blue triangles indicate Bayes Factor support for the CONCATENATED

model over both HETERO and SEPARATE with −3.2 < c < 0. Green square indicates support

for the HETERO model over both CONCATENATED and SEPARATE. Red triangle indicates

support for SEPARATE model over both CONCATENATED and HETERO with c = -3.2. Filled

symbols represent ≥90% average information content across genes, with closed symbols indicating

<90%. Numbers indicate particular replicates mentioned in the text.
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313

Volvocales Example.— The results of the pair-wise tests of congruence are illustrated314

in Fig. 3a. The critical value c computed for the four-taxon case based on the prior predictive315

distributions of BF under CONCATENATED and SEPARATE models was -1.52 (Fig. 1b).316

Under both criteria (c = 0, c = -1.52), marginal likelihoods indicated congruence for all gene pairs317

with the exception of petD and rpl36, each of which was incongruent with every other gene (but318

were congruent with each other). Both petD and rpl36 favor Gonium + Pleodorina (Fig. 3b) while319

all other genes favor Volvox + Pleodorina (Fig. 3c). The CONCATERPILLAR analysis, however,320

indicated that all 56 genes were topologically congruent. The two genes found to be incongruent321

using BF analysis (petD and rpl36) were not contiguous in the chloroplast genomes of four taxa,322

suggesting that they were not the result of a single horizontal transfer event. In the case of petD,323

there is a single variable amino-acid site (amino-acid position 106) that determines the Gonium +324

Pleodorina relationship. Excluding site 106 removes support for this relationship. Despite the325

incongruence of rpl36 to the other genes, this particular gene is short (total nucleotide length326

=114) and it contains relatively less information relevant to estimating topology. We also used327

PhyloBayes (Lartillot et al., 2009) to estimate phylogeny for the petD data (including all the328

sequences from Chlorophyceae available on Dryad: http://dx.doi.org/10.5061/dryad.q8n0v)329

under the CAT model (Lartillot and Philippe, 2004). The CAT model accommodates sites with330

distinct state frequency profiles, unlike standard models that assume state frequencies are331

homogeneous across sites. The CAT model can potentially avoid long-branch attraction due to332

the model assuming a wider range of available amino acids at particular sites than are actually333
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available. However, even under the CAT model, Pleodorina resolved sister to Gonium.334
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Figure 3: Pair-wise BF test for phylogenetic congruence for all possible pairs among 56 protein

coding plastid genes (Fuč́ıková et al., 2016) where the colors represent the information content

present in the gene and the lines between the genes indicate phylogenetic incongruence (i.e. support

for SEPARATE over CONCATENATED) suggested by the BF test (3a). In the 56 gene sets, petD

and rpl36 show support for Gonium + Pleodorina relationship (3b), whereas the other 54 genes

support Volvox + Pleodorina relationship (3c).
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DISCUSSION337

The presence of deep coalescence does not guarantee that different genes will have338

different tree topologies, but the fact that lineages are joined randomly when there is deep339

coalescence means that greater incongruence is the expected result of increasing the frequency of340

deep coalescence. In general, more deep coalescences yielded higher D̂ and a greater chance of the341

SEPARATE model winning. In fact, D was the most important variable in discriminating342

SINGLE vs. CONCATENATED model in the discriminant function analysis involving a number343

of other variables tested (number of conflicting nodes, number of variable sites, number of344

parsimony informative sites, θ/T , species tree height/shortest gene tree height, species tree345

height/longest gene tree height, average information content, D, and number of deep346

coalescences). The D, number of deep coalescences, and θ/T could separate SINGLE vs.347

CONCATENATED models with 91% accuracy where the D alone could separate the two with348

82% accuracy. Because a single simulation study can only suggest appropriate cutoff values for D̂349

for the limited range of parameter combinations explored, we argue that a BF approach provides350

a sensible general approach for determining when values of D̂ are too high to be compatible with351

phylogenetic congruence.352

It is interesting and informative to examine some outliers in the simulation results353

presented in Figure 2. For example, consider replicate 532, for which the SEPARATE model won354

despite a high average information content (94% of maximum information), relatively low D, and355

a single topological conflict among 10 genes. Removing the gene that conflicted (gene2) from the356
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concatenated set, followed by re-estimation of marginal likelihoods, resulted in a win for the357

CONCATENATED model, suggesting that a single incongruent subset out of 10 total can be358

enough to place the SEPARATE model on top.359

Low phylogenetic signal can result in a preference for the CONCATENATED model360

despite a high number of deep coalescences (e.g. Fig. 2, replicates 19, 56, 70, 97, 251, 292, 339,361

533). In some extreme cases, when phylogenetic information content is very low (approaching362

zero information), D̂ can also be low (Fig. 2, replicates 19, 56, 70, 251). In such cases, posterior363

samples of individual gene subsets visit every possible tree topology (of the 105 possible unrooted364

binary tree topologies for 6 taxa) in roughly equal proportions. Phylogenetic dissonance is zero if365

all subset posterior distributions are equal, and this is true whether these posterior distributions366

are concentrated or flat, so low D̂ in the face of low information content for all gene subsets is not367

surprising. It is also unsurprising that the marginal likelihood would favor the368

CONCATENATED model in such cases because one tree topology is about as good as any other369

tree topology in explaining the data, and the marginal likelihood implicitly punishes models for370

including parameters that do not provide access to regions of parameter space providing371

appreciably higher likelihood.372

The Case of Mistaken Heterotachy.— An interesting phenomenon was observed as373

a result of using phylogenetic dissonance to assess MCMC convergence with respect to tree374

topology. Most replicate MCMC analyses exhibited D̂ < 0.1, indicating that the posterior375

samples from replicate analyses were essentially identical (as they should be if both Markov376
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377 chains mixed well and were sampled only after converging to the stationary distribution);

378 however, many analyses exploring the HETERO model produced unexpectedly high replicate 379 

phylogenetic dissonance values. The reason for this turns out to be the completely

380 understandable result of a model making the best of a bad situation, and offers a warning for 381 those 

who might be tempted to use a HETERO model win as an evidence for heterotachy.

382 Consider a case of two data subsets (genes) in which the true tree topology differs (Fig. 4). 383 The 

HETERO model assumes that the same tree topology applies to both genes (which is not 384 true in this 

case), but allows each gene to have its own set of edge lengths. The HETERO model 385 can choose to 

focus on the true tree topology for gene 1 and attempt, using edge lengths, to

386 explain the data for gene 2 as best it can. Alternatively, it can focus on the true tree topology for 387 

gene 2 and attempt, using edge lengths, to explain the data for gene 1 to the extent possible. How 388 does 

a model fit data when assuming an incorrect tree topology? The answer is that it increases 389 the lengths 

of edges for some taxa that are sister taxa in truth but not in the assumed tree,

390 leaving other closely related taxa connected by relatively short paths. Thus, the fact that some 

391 taxa are more similar than the tree topology suggests can be explained by the model using

392 evolutionary convergence (the long edged taxa), while similarities between other taxa that seem 

393 far apart on the assumed tree topology are explained by a lowered rate of substitution. In

394 replicate analyses, it is possible for one run to choose the tree topology for gene 1 and the other 

395 replicate to choose the tree topology for gene 2, yielding posterior distributions that are

396 concentrated on conflicting tree topologies, which in turn produces high estimated phylogenetic 397 

dissonance. The lesson to be learned from this study is that a win by the HETERO model may



not mean the presence of heterotachy in data, but may simply reflect a model doing its best to398

explain data generated on a different tree topology. This crafty use of spurious edge lengths by399

models to explain away topological discordance among genes was explored in detail by Mendes400

and Hahn (2016). In their study of simulated and empirical data, Mendes and Hahn (2016) found401

that the topological discordance between gene trees due to ILS can cause multiple apparent402

substitutions on the focal tree (e.g. species tree) on one or more of its branches that uniquely403

define a split on the discordant gene tree that is absent in the species/focal tree. It is interesting404

that measuring phylogenetic dissonance among replicate analyses under the CONCATENATED405

model alone can potentially be used to detect incongruence in gene tree topologies.406

The presence of true heterotachy is suggested by low phylogenetic dissonance combined407

with HETERO model being the winning model. None of our simulations imparted true408

heterotachy; however, some results (e.g. replicate 942) did combine D̂ = 0 with a winning409

HETERO model. The explanation is that the HETERO model is actually detecting heterochrony410

(a new term) rather than heterotachy. Heterochrony may be defined as differences in the same411

edge length (measured in expected number of substitutions per site) across genes due to the fact412

that coalescence depth varies among genes (even if the topology is identical). The HETERO413

model is, in this case, detecting differences in coalescence times instead of differences in rate of414

substitution.415
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Figure 4: Explanation of paradoxical high dissonance for samples from indepen-

dent replicate MCMC analyses exploring the same posterior distribution under

the HETERO model.

416

Empirical Volvocales Example.— Our empirical example involved a reanalysis of a417

subset of four taxa from a more inclusive study of green algal phylogeny. In that former study,418

26



Fuč́ıková et al. (2016) found strong support for a single tree topology relating these four taxa419

using a concatenated dataset, but reported very low internode certainty (IC: Salichos et al., 2014)420

values for all but one edge in the estimated tree. This suggests some conflict exists among genes,421

and thus it is not surprising that our BF analyses identified two genes (rpl36 and petD) that422

preferred a different tree topology than the majority (54/56) of genes. What is perhaps surprising423

is that likelihood ratio tests conducted using CONCATERPILLAR found no conflict, concluding424

that all 56 genes should be concatenated. The fact that our BF approach and425

CONCATERPILLAR’s LRT approach provide conflicting advice highlights a major difference426

between the Bayesian and frequentist statistical approaches to phylogenetics. For the petD gene,427

we found that a single amino acid site (site 106) determines the preference of this gene for428

Gonium + Pleodorina. Bayesian analyses do not take into consideration (either implicitly or429

explicitly) any data other than what was observed, and thus will take the evidence from site 106430

at face value. Assuming a site appears (to the model) to be a reliable reporter (i.e. substitution is431

rare and the site is not contradicted by any other site), then even one site may have a strong432

impact on a Bayesian phylogenetic analysis. Frequentist approaches involving bootstrapping,433

however, take additional sources of uncertainty into consideration. Bootstrapping evaluates many434

data sets, each different than the observed data set, and thus takes uncertainty in the observed435

data into account. This is one explanation for why bootstrap support values for clades tend to be436

smaller than posterior probabilities: the Bayesian analysis assumes that there is no uncertainty in437

the observed data and never considers the possibility that the observed data could be atypical in438

some way. If support for a clade depends critically on a single site, then the bootstrap support for439

that clade depends on the probability that the site will be included at least once in a particular440
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bootstrap replicate. The probability q that a particular site (out of n total sites) will be omitted441

from any given bootstrap data set is442

q =

(
1− 1

n

)n

, (5)

which (by definition) approaches e−1 as n → ∞. Thus, the probability that a single critical site443

will be included at least once in any given bootstrap data set is p = 1− q, which is approximately444

63% for a reasonably large number of sites. We should therefore not expect strong bootstrap445

support for a clade if that clade is supported only by a single site, even if that site appears to be446

reliable indicator of history. Such a site may, however, have a strong impact on a Bayesian447

analysis because data sets excluding that site are never considered. For this reason, frequentist448

tests of data combinability that use bootstrapping to evaluate the significance of likelihood ratios449

are not appropriate when Bayesian approaches are used for estimating phylogeny.450

SUMMARY451

Marginal likelihoods provide a straightforward way of assessing the statistical significance452

of phylogenetic dissonance (Lewis et al., 2016). We simulated data sets with varying levels of deep453

coalescence and found, as expected, that larger numbers of deep coalescence events led to higher454

estimated phylogenetic dissonance and also to preference for the SEPARATE model over the455

CONCATENATED and HETERO models based on estimated marginal likelihoods. Exceptions456

mainly involved data sets with low information content due to small tree lengths, which can show457

low dissonance and preference for the CONCATENATED model despite a relatively large number458

of deep coalescence events. We calibrated BF comparisons between CONCATENATED and459
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SEPARATE using the method of Garćıa-Donato and Chen (2005) to determine the critical value460

that balances the prior predictive error probabilities of competing models, finding that the461

standard cutoff (1.0, or 0.0 on the log scale) is not always ideal but in practice changed very few462

of our model choice determinations. Our results also show that conflict among gene tree463

topologies may masquerade as heterotachy in combined analyses, as shown previously by Mendes464

and Hahn (2016).465
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