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Recent statistical arguments for parsimony have cen-
tred on the demonstration by Tuffley and Steel (1997)
that maximum likelihood (ML) under a “no common
mechanism” (NCM) model will produce the same rank-
ing of trees as parsimony. We will argue that the NCM
model does not provide a compelling justification for us-
ing parsimony and will present a proof that if one were
to consider the NCM model as a basis for ML inference
of trees, then model selection criteria would reject the
NCM in favor of simpler models.

Statistical arguments defending parsimony are sur-
prisingly diverse and several distinct “parsimony-
equivalent” models have been identified. We will use
the phrase “parsimony-equivalent” to refer to models
that are guaranteed to cause ML to estimate the same
tree as parsimony (with the caveat that employing these
models in a Bayesian context may not lead to the same
tree as parsimony). We will briefly discuss what these
parsimony-equivalent models tell us about the strengths
and weaknesses of parsimony. Of particular interest is
whether these models have identified general condi-
tions in which parsimony should be preferred to ML
inference under one of the commonly used models of
character evolution. In our view, statistical arguments
for parsimony have been unpersuasive because they
have failed to identify general scenarios of speciation,
extinction, or character change that would result in data
sets in which parsimony’s performance is superior to
ML inference under standard models.

The simplest model for discrete character data as-
sumes that all substitutions occur at the same rate.
We will refer to this model as the Cavender-Farris-
Neyman (CFN) model (Jukes and Cantor 1969; Neyman
1971; Farris 1973; Cavender 1978). When evaluating
the probability of a transition across a branch in the
CFN model, all characters are assumed to use the same
branch length. The NCM model of Tuffley and Steel
generalizes the CFN model by allowing each character
to have a separate set of branch lengths in the likelihood
calculations.

Because the number of parameters in the NCM model
is always larger than the number of data points, many
researchers (e.g., Sanderson and Kim 2000; Kolaczkowski
and Thornton 2004; Kim and Sanderson 2008) have used
the result of Tuffley and Steel to argue that parsimony
is best viewed as a nonparametric estimator of phy-
logeny. This interpretation seems appropriate, but it
is unclear whether it is an endorsement of parsimony.
Nonparametric estimators are usually thought of as con-
servative because they sacrifice power for a wider range
of applicability. However, Spencer et al. (2005) point
out that parsimony’s well-known cases of inconsistency
(Felsenstein 1978) even under mild assumptions and
common conditions (Hendy et al. 1994; Huelsenbeck
and Lander 2003) demonstrate that parsimony cannot
be viewed as a conservative, robust estimator of trees
(see also discussion in Kim and Sanderson 2008).

A different attempt to use the NCM model as a justi-
fication for parsimony relies on the reputation of ML as
a well-behaved framework for estimation. This form of
argument treats the generality of the formulation of the
NCM model (no branch length parameters are forced to
be equal) as a reason to believe that the model will lead
to sound inference under very general conditions. For
example, Farris (2008) wrote:

Tuffley and Steel (1997) introduced a model
called No Common Mechanism (NCM), in
which characters may—but are not required
to—vary their relative rates independently,
both within and between branches. Because
the independent variation is taken only as
a possibility, not as a requirement, NCM
would apply to almost any situation, and so
may be accepted as realistic. This is useful
because Tuffley and Steel also showed that
maximum likelihood under NCM selects
the same trees as does parsimony. With the
realistic NCM in the background, then, most
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parsimonious trees have greatest power to
explain available observations.

Unfortunately, such arguments neglect the importance
of model selection in ML inference. We will not review
all the arguments against NCM-based justifications of
parsimony here (see Steel 2005; Huelsenbeck et al. 2008,
for helpful perspectives on the issues) but will focus
on the perspective that model selection tools bring to
the debate between parsimony and likelihood (see also
Sober 2004).

Analyzing data under more complex models is intu-
itively appealing, but when the number of parameters
to be estimated exceeds the information in the data, our
inferences can be unsound. Fortunately, there is a well-
developed literature on model selection to provide guid-
ance for when a model has too many parameters for the
inference to be reliable. The Akaike information crite-
rion (AIC hereafter, Akaike 1973) is a commonly used
tool for choosing between alternative models. The AIC
is usually expressed as follows:

AIC= 2k− 2max ln(L), (1)

where k is the number of parameters in a model and
max ln(L) is the maximum log likelihood under the
model for our data. Lower AIC scores are preferred.

In Appendix A, we prove the following theorem:

Theorem 1. For any r ≥ 2, the CFN model will have a lower
AIC score than the NCM model for any tree and any character
matrix comprising 3 or more r-state characters.

When there is only one character in the matrix, the
CFN and NCM models are identical. The proof pre-
sented here does not exclude the possibility that the
AIC will favor the NCM model over CFN on data sets
with 2 characters. Clearly, the CFN model is not rich
enough to handle the complexity of most data sets. Our
results do not show that the CFN model is the most
reasonable model to use, merely that it is superior to the
NCM model (according to the AIC).

The current proof relies on several “worst-case” sce-
narios for the CFN model. The proof uses the likelihood
under the NCM model but only a lower bound on the
likelihood under the CFN model. This bound was calcu-
lated using just one labeling of interior nodes. We also
assumed that the proportion of characters that change
across each branch in the tree is optimized to generate
the largest likelihood ratio in favor of the NCM model.
This proportion of characters, r−1

2r , corresponds to a
large number of changes per branch. When the number
of changes on each branch is high, many internal node
labelings will contribute significantly to the likelihood.
Thus, the lower bound that we employed for the like-
lihood under the CFN model will be loose. The proof
demonstrates a preference for the CFN model over the
NCM. Because the bounds used are not tight, the pref-
erence for the CFN model will probably be very strong
for most real data sets.

OVERPARAMETERIZATION OF THE NCM MODEL

The NCM model is clearly overparameterized—the
number of parameters is always greater than the num-
ber of cells in the data matrix. When introducing the
NCM model, Tuffley and Steel (1997) pointed out that
the large number of parameters in the model makes it
statistically inconsistent. This overparameterization is
also the focus of the Steel (2005) paper. In this light, it is
unsurprising that statistical model selection will prefer
a simpler model. Indeed, a model in which the number
of parameters exceeds the number of data points is so
overparameterized that the asymptotic assumptions un-
derlying the justifications for the AIC (and ML inference
in general) do not hold. Far from giving us confidence
about the statistical status of parsimony, these consider-
ations merely reinforce the point that the NCM model is
too overparameterized to be trusted.

Here, we have attempted to give the benefit of the
doubt to the argument of Farris (2008) about the gen-
erality of the NCM model. For the present purposes, we
will assume that the NCM model is a legitimate and po-
tentially useful model for ML inference. Even if we use
the AIC—a model selection criterion that has been crit-
icized for favoring models that are too parameter rich
(Katz 1981; Kass and Raftery 1995)—we will not prefer
the NCM model over the simplest model used in stan-
dard ML tree inference. The theorem proven here shows
that it is not even necessary to go through the exercise
of formal model selection—the NCM model can simply
be rejected without looking at the data set. It is striking
that this result can be demonstrated using a loose lower
bound on the score of the CFN model and assuming no
properties of the data set at hand.

If one accepts the criticisms that the AIC chooses
models that are too parameter rich (Katz 1981; Kass and
Raftery 1995), then model choice criteria which do not
share this deficiency would also prefer the CFN model
over the NCM model. For example, the “penalty” for
parameters in the Bayesian information criterion (the
BIC; Schwarz 1978) is k lnM, where k is the number
of parameters and M is the number of characters. The
penalty term in the AIC is 2k. Note that k lnM > 2k
whenever M ≥ 8, so the BIC penalizes parameter-rich
models more severely than the AIC when M ≥ 8. Thus,
a corollary of Theorem 1 is that model selection using
the BIC will favor the CFN model over the NCM model
for data sets of 8 or more characters.

THE STATUS OF PARSIMONY AS A STATISTICAL
APPROACH TO TREE INFERENCE

The central message of the previous section is that
the generality of the formulation of the NCM model
does not provide a compelling argument for the use of
parsimony because the NCM model would never be
chosen by model selection criteria. This result should
not be taken as a statement that parsimony can never
be defended—merely that this defense of parsimony is
lacking.
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As Sober (2004) points out, it is inappropriate to take
the result of Tuffley and Steel as the “only” way to
justify parsimony. We cannot equate every property of
the NCM model with parsimony because there may be
other ways to understand parsimony. In addition to the
existence of other parsimony-equivalent models, im-
portant theoretical results have revealed cases in which
parsimony is guaranteed to behave well. Felsenstein
(1973) showed that if the probability of change in char-
acter state is very small, then parsimony will agree with
a tree estimate from ML. Steel (2000) identified sufficient
conditions for parsimony to be a consistent estimator; in
general, these conditions boil down to the probabilities
of change being “sufficiently small and not too unequal
across the tree” (see Steel 2000, for explicit description of
conditions). In these restricted domains, parsimony will
be a consistent estimator of the tree, but ML under the
CFN model will also be consistent. It is unclear which
method will perform better in terms of power.

Parsimony-equivalent models seem to offer deeper
insight into the behavior of parsimony because they
reveal what assumptions must be put into a model to
make ML act like parsimony for any data set—these
models do not just make predictions about parsimony’s
behavior when the amount of character divergence is
low. What do these models imply about parsimony?

THE ABSENCE OF BRANCH LENGTH HETEROGENEITY
IN PARSIMONY-EQUIVALENT MODELS

Goldman (1990) proved that the most parsimonious
tree is identical to the tree preferred by ML under the
CFN model if we force all branches to have the same
length and we simultaneously infer ancestral charac-
ter states for each internal node. At first glance, the
Goldman (1990) model and NCM model seem to be at
opposite extremes in terms of what they assume about
branch lengths. In the Goldman approach, every branch
is forced to have the same length. In the NCM model,
each character has its own set of branch lengths.

Unlike virtually every other model used in ML phy-
logenetics neither the Goldman (1990) model nor the
NCM model consider the possibility that different
branches should have different expected probabilities
of change across all characters. The Goldman model
explicitly ignores branch length heterogeneity, but how
is it possible to say that the NCM model does some-
thing similar? When maximizing likelihood for a char-
acter, the NCM model will not prefer to put changes
onto branches that appear to be long (based on other
characters) because none of the branch length param-
eters in the model affect multiple characters. Loosely
speaking, the NCM model embraces abundant branch
length heterogeneity (with the same branch being in-
ferred to have a length of 0 for some characters and
a length of ∞ for other characters) but not meaningful
branch length heterogeneity. Suspicion about the mean-
ingfulness of branch length parameters under NCM is
aroused by the realization that when more than one
most parsimonious reconstruction exists for a character,

ML estimates for the same branch length can vary be-
tween 0 and ∞. This branch length agnosticism of the
NCM model is even more obvious when one integrates
over the branch length parameters rather than using a
maximum likelihood estimate (MLE) of the length. This
Bayesian form of the NCM model results in inference
identical to the CFN model with the same branch length
applied to every branch (Goloboff 2003; Huelsenbeck
et al. 2008).

The refusal to introduce an across character branch
length parameter seems crucial to achieving parsimony-
equivalent behavior. This assumption is embedded
within the procedure parsimony uses to score trees.
When calculating a parsimony score, the number of
changes in other sites does not alter the cost of adding a
change on a branch. This failure to account for meaning-
ful branch length heterogeneity by parsimony-equivalent
models clearly has some negative side effects such as
the well-known susceptibility to long-branch attraction
(Felsenstein 1978). Can this property be a benefit over
the standard ML approach of using all the characters to
infer a different length for each branch in the tree? At
first glance, it seems that the answer would be “probably
not.” In general, it seems safer to allow for the possibil-
ity of important branch length heterogeneity affecting
multiple sites than refusing to recognize a “multicharac-
ter branch length effect” when it does occur. However,
there are contexts in which it can be better to ignore
branch length information (see the discussion of the
results of Kolaczkowski and Thornton 2004 below).

OVERPARAMETERIZATION OF
PARSIMONY-EQUIVALENT MODELS

The models of Farris (1973), Tuffley and Steel (1997),
and Goldman (1990) establish general links between
parsimony and ML. All these models are overparam-
eterized (see Felsenstein 1973, for a discussion of the
model of Farris 1973). As a result, they display the un-
usual property that the ML score for a character can be
calculated from a single (most parsimonious) character-
state reconstruction. Note that, for data sets with mul-
tistate characters, it is often possible to assign branch
lengths in the NCM model such that multiple ances-
tral state reconstructions do contribute to the ML score.
But even in these cases, it is possible to reassign branch
lengths to the tree in the NCM model such that the
ML score can be obtained from a single reconstruction.
Thus, the conclusion that the ML score can be calculated
from one reconstruction is valid. Under most models
used for ML phylogenetics, all ancestral character-state
histories contribute some to the likelihood.

If two trees have the same minimum number of steps,
but 1 has more most parsimonious character-state recon-
structions than the other, then parsimony will judge the
trees to be equally good. Mimicking this property in ML
seems to require a procedure that is equivalent to the
inference of ancestral character states—either explicitly
inferring states (as in the Goldman approach) or as
a side effect of zero length branches (as in the NCM
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model). The overparameterization inherent in doing
this, as well as negative results about the prospects for
inferring ancestral states on deep trees (Mossel 2003),
imply that this practice is not an appealing aspect of
parsimony-equivalent models.

Standard ML under the single-branch-length CFN
model would sum over all possible ancestral character
states and would not be overparameterized. This form
of inference will not always infer the same tree as parsi-
mony. The CFN model with one length for all branches
evaluates the probabilities of character-state change in a
way that is exactly analogous to how parsimony scores
changes. But in order to get parsimony-equivalent be-
havior, Goldman (1990) had to make inference under
the CFN overparameterized by estimating ancestral
character-state assignments for all internal nodes.

The overparameterization in the Goldman (1990) ap-
proach is not simply a mathematical restriction to make
it easier to prove that a single-branch-length CFN model
is parsimony equivalent. Cases are known in which
single-branch-length CFN model and parsimony will
disagree on the tree. Steel (1989) showed that parsi-
mony can be an inconsistent estimator of the tree even
when branch lengths are equal and characters evolve
according to the CFN model (see also Kim 1996). ML
inference under the single-branch-length CFN model,
on the other hand, is a consistent estimator of the tree
if the data are generated on a tree with the same length
assigned to every branch. However, model conditions
with “unequal” branch lengths can be found for which
ML inference under the equal branch length CFN model
appears to be inconsistent, whereas parsimony remains
consistent (e.g., the tiny region of parameter space in
figure 10 of Huelsenbeck et al. 2008).

Sober (2004) and Goloboff (2003) are correct to point
out that other connections between ML and parsimony
may be demonstrated in the future. Thus, we cannot
“know” that properties that are common to all known
parsimony-equivalent models are actually prerequisites
for parsimony-equivalent behavior. Nevertheless, we
conjecture that any general parsimony-equivalent mod-
els developed in the future will also be characterized by
overparameterization. This conjecture is based on two
points from the discussion above. The first is the nature
of how parsimony scores a character in the face of mul-
tiple most parsimonious reconstructions. The second is
the fact that the single-branch-length CFN model agrees
with parsimony about how to assess the probability
of different events but can only be made equivalent to
parsimony if inference of ancestral character states is
performed. By “general parsimony-equivalent model,”
we mean a model for which ML and parsimony agree
on any data set when the parameters of the model
are not arbitrarily constrained. Steel and Penny (2004)
proved that CFN is parsimony-equivalent if the num-
ber of states is large enough relative to the number of
taxa and characters; but we would not consider this
to be a general parsimony equivalence because for a
fixed number of character states, data sets can be cre-
ated for which parsimony and ML disagree. Similarly,

a single-branch-length CFN can be forced to be parsi-
mony equivalent by constraining the branch length to
be sufficiently small (M. Steel, personal communication;
see Kim 1996, for a proof that the single-branch-length
CFN model is parsimony equivalent when the MLE of
the per-branch transition probability is small), but the
general form of the single-branch-length CFN model is
not always parsimony equivalent.

IMPLICATIONS OF PARSIMONY-EQUIVALENT MODELS

It is unwise to take the apparent generality of the
NCM model at face value and interpret the entire pa-
rameter space of NCM as a realm in which parsimony
will perform well. To do this is to adopt an extremely
optimistic parametric worldview in which including
a parameter in a model to account for a phenomenon
guarantees the model will be resistant to noise intro-
duced by that phenomenon. We are familiar with cases
in which adding a parameter does make a model more
robust. For example, the Jukes–Cantor model can per-
form poorly if there is transition–transversion bias, but
adding a parameter to account for this bias results in a
model that is not confused by a high rate of transitions.
However, when we are dealing with a model as overpa-
rameterized as the NCM model, it is not appropriate to
think that we have made our inference widely applica-
ble by adding more parameters. Well-known examples
of the inconsistency of parsimony show that it does not
perform well for all combinations of parameters that
are allowed under the NCM model (Felsenstein 1978;
Hendy et al. 1994; Huelsenbeck and Lander 2003). The
theorem proven here shows that if we are interested in
ML tree estimation and using the AIC or BIC for model
selection, we will never prefer the NCM model over
even the simplest independent, identically distributed
model, the CFN.

Even as a heuristic tool for understanding parsimony,
the parametric interpretation of the result of Tuffley and
Steel does not seem particularly helpful. On the basis
of the NCM model’s assumptions, one might assume
that parsimony would outperform standard ML models
when data are generated such that there are no corre-
lations between the branch lengths from one character
to the next. Interestingly, data generated by such a pro-
cess will show no strong pattern of branch length het-
erogeneity and, in fact, will be indistinguishable from
data generated by a one length for all branches model.
If the average amount of change across branches is not
too high, then these data will be easy for almost any
character-based tree reconstruction method. If the av-
erage amount of change is high, then the data can be
difficult to analyze. Ironically, it is parsimony, and not
the CFN model, that will become an inconsistent esti-
mator of the tree for these data sets (the inconsistency of
parsimony when branch lengths are equal but long was
shown by Steel 1989; Kim 1996).

Interpreting the Tuffley and Steel (1997) result as jus-
tification for parsimony as a nonparametric inference
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tool, on the other hand, causes us to consider contexts
in which the assumptions of standard ML tree inference
might be particularly problematic (instead of looking
for cases in which the data might correspond to the as-
sumptions of parsimony-equivalent model). The case of
parsimony outperforming ML when data are generated
as a mixture of tree models with different branch lengths
(Kolaczkowski and Thornton 2004) provides an inter-
esting example. When data from some tree shapes are
mixed together, the common branch length assumption
made by standard ML methods is so grossly incorrect
that it actually misleads us during tree inference. In
this case, parsimony’s refusal to treat some branches as
longer than others seems to be better than estimating
one common set of branch lengths. The standard ML
approach detects branch length heterogeneity in these
data but would do better if it ignored this information.

Fortunately, for advocates of the standard ML ap-
proach to phylogenetics, this result does not appear to
be general. Spencer et al. (2005) showed that inference
under a simple ML model outperforms parsimony on
average if we examine a wider range mixture mod-
els of the type that Kolaczkowski and Thornton (2004)
studied. Gaucher and Miyamoto (2005) showed that the
preference for parsimony when data are generated on
a mixture of tree models is also sensitive to the exact
mixing proportion. Averaging over a wider set of con-
ditions, Gaucher and Miyamoto (2005) found that the
performance of ML was superior to the performance of
parsimony. Spencer et al. (2005) also demonstrated that
using a wider set of mixture models for inference can
avoid the poor performance of ML methods even in the
difficult mixtures originally reported by Kolaczkowski
and Thornton (2004).

CONCLUSIONS

The speed and intuitive appeal of parsimony make
it a useful tool for exploring data, understanding exist-
ing methods and developing new methods. The proof
by Tuffley and Steel (1997) stands out as an exceptional
and enlightening result, but it should not be taken as a
statistical justification for the use of parsimony as a reli-
able ML estimator of trees. A good model for phyloge-
netic inference must be rich enough to deal with sources
of noise in the data, but ML estimation conducted us-
ing models that are clearly overparameterized can lead
to drastically wrong conclusions. The NCM model cer-
tainly falls in the realm of being too parameter rich to
serve as a justification of the use of parsimony based on
it being an ML estimator under a general model.
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APPENDIX A

Proof of theorem

The proof will be formulated for a generic alphabet
size of r states (for DNA data, r= 4). The transition prob-
ability across an edge in the CFN and NCM models are
a function of the edge length, ν. Under both these mod-
els, the conditional probability Pr(i → i|ν) is the same
regardless of which of the r states is represented by i.
This probability of remaining in the same state will be
denoted ps(ν).

Furthermore, the probability Pr(i → j|ν) is the same
for all pairs of states such that i ≠ j. This probability of
a different state across an edge will be denoted pd(ν).
The probability of a change to a particular different state
cannot exceed 1/r in either model. Thus,

0 ≤ pd(ν) ≤ 1/r. (A.2)

By the law of total probability, we have

pd(ν) =
1− ps(ν)

r− 1
. (A.3)

Consider an aligned data matrix, X, consisting of M
characters (columns in the data matrix). Tuffley and
Steel (1997) demonstrated that the maximized likeli-
hood under the NCM model (denoted LN, here) can be
calculated from a single most parsimonious labeling of
the internal vertices of the tree with character states for
each character. There may be many most parsimonious
labelings, but, without loss of generality, we can choose
any one of them in the following discussion. We will
denote this labeling as m.

ln LN(T, Ŵ|X) =−M ln(r)−M ln(r)
∑

b∈E

(1− sb,m), (A.4)

where Ŵ denotes the edge length parameters for the
NCM model when the parameter values are chosen to
maximize the likelihood, E is the set of all edges in the
tree T and sb,m is the proportion of characters that retain
the same state across branch b in the labeling m.

The result of Tuffley and Steel is usually expressed in
terms of the parsimony score rather than a summation
over a most parsimonious labeling. Note that by defini-
tion of a most parsimonious labeling, M

∑
b∈E(1 − sb,m)

is equal to the parsimony score of the tree.
Equation A.4 relies on the fact that under the NCM

model all characters that do not change across an edge

can be explained by assigning the corresponding edge
a length of 0. Such site × edge combinations will con-
tribute factors of 1.0 to the likelihood. For every site ×
edge combination that involves a site changing across
an edge in m, the ML estimate of the length of edge can
be set to ∞, which gives a transition probability of 1/r.
By the definition of a most parsimonious labeling, the
number of such site × edge combinations is equal to the
parsimony score.

Note that the fact that all MLEs of branch lengths go
to 0 or ∞ is a property of the NCM on a particular la-
beling and not true of the NCM in general. When r > 2,
some of the edge length estimates of some site × edge
combinations may be nonidentifiable. Here, we are cal-
culating the ML score under the NCM from one label-
ing, so we assume that all the branch lengths will go to
0 or ∞. The likelihood calculation (given these branch
lengths) is still a sum of probabilities over all possible
ancestral character state labelings, but in this context, all
other labelings will have a probability of 0, so we can
simply calculate the likelihood on the labeling used to
infer branch lengths.

A lower bound on the CFN likelihood as a function of one
labeling.—The maximized likelihood under the CFN
model, LC, is the sum of likelihoods over all possible
labelings:

LC(T, V̂|X) =
∑

l

LC(V̂|l), (A.5)

where V̂ is the vector of ML estimates of the edge lengths
for the CFN model, LC(V̂|l) is the probability of a partic-
ular labeling given these edge lengths, and the summa-
tion is performed over the set of all possible labelings.

Rather than marginalize over all labelings, we will fo-
cus on the likelihood of one most parsimonious label-
ing. Because LC(V|m) is just one of the terms that are
summed to obtain LC(T,V|X), and because these likeli-
hoods of labelings are all positive numbers, we know
that LC(T,V|X) ≥ LC(V|m).

We will denote the set of edge lengths for the CFN
model that maximizes the likelihood under a partic-
ular labeling as V̂l. If we choose edge lengths for the
CFN model that maximize LC(V̂m|m), then we may
not be choosing the parameter values that maximize
LC(T,V|m). In other words, V̂m is not necessarily equal to
V̂ (the set of edge lengths that maximize the likelihood
under the CFN model). Nevertheless, the likelihood of a
most parsimonious labeling under the CFN using V̂m is
a lower bound on the ML score of a tree under the CFN:

LC(T, V̂|X) ≥ LC(T, V̂m|X) ≥ LC(V̂m|m). (A.6)

We can express the log likelihood of one labeling under
the CFN model as:

ln LC(V̂m|m) = −M ln r +
∑

b∈E

(Msb,m ln(ps(ν̂b))

+M(1− sb,m) ln pd(ν̂b)). (A.7)
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Here, ν̂b denotes the member of V̂m that is assigned to
edge b.

The events that occur on different branches are as-
sumed to be independent of each other. Thus, when
examining the effect of a single labeling, we can find
the length for each edge that maximizes the likeli-
hood by considering just the factors in the likelihood
equation that refer to that edge. So, for any edge b, the
MLE of length will result in the following transition
probabilities:

ps(ν̂b) = max

(

sb,m,
1
r

)

, (A.8)

pd(ν̂b) = min

(
1− sb,m

r− 1
,

1
r

)

. (A.9)

In other words, the MLEs of the edge lengths will re-
sult in the probability of an i → i transition that exactly
matches the proportion of characters that do not change
state across the edge in the most parsimonious labeling
(subject to the constraint that in the CFN Pr(i → i) ≥(

1
r

)
). Although we do not need to be using MLEs for the

CFN model in this proof (because we are just establish-
ing a lower bound for the ML score under CFN), using
ML branch lengths makes our bound tighter. Appendix
B shows that these branch lengths are indeed the MLEs
in this context.

An upper bound on the log-likelihood ratio in favor of the
NCM model.—If we evaluate the likelihood under the
NCM model and the lower bound for the likelihood of
the CFN model on the same most parsimonious label-
ing, then we can bound the improvement in likelihood
that can be obtained by adopting the NCM model.
Examination of Equations A.4 and A.7 reveals that the
formula for the upper bound on the log of the likelihood
ratio, R, between NCM and CFN is

R(m) = ln LN(Ŵm|m)− ln LC(V̂m|m) (A.10)

=
∑

b∈E

M

(

sb,m ln

(
1

ps(ν̂b)

)

+(1− sb,m) ln

(
1

rpd(ν̂b)

))

. (A.11)

For notational convenience, we will drop the explicit de-
pendence on a labeling for the remainder of the proof.
In all cases, the upper bound on the log-likelihood ratio
will be referred to as simply R, despite the fact that it is
a function of a most parsimonious labeling m. We can
consider each edge independently:

Rb =M

(

sb,m ln

(
1

ps(ν̂b)

)

+ (1− sb,m)ln

(
1

rpd(ν̂b)

))

, (A.12)

R =
∑

b∈E

Rb. (A.13)

Without knowing the number of changes across each
branch in the tree, we cannot calculate the exact con-
tribution of each branch to the log-likelihood ratio be-
tween models. However, we can find the upper bound
for the contribution to the total R made by a single
branch, b. This upper bound, R∗b , will be achieved when
the proportion of characters that are constant across
a branch is optimal in terms of favoring the NCM
model over the CFN model. This proportion of char-
acters will be denoted by s∗b,m in the remainder of the
proof:

R∗b =M

(

s∗b,m ln

(
1

ps(ν̂b)

)

+ (1− s∗b,m) ln

(
1

rpd(ν̂b)

))

.

(A.14)

Solving for the worst-case proportion of sites changing across
a branch.—We can solve for s∗b,m by finding the point
where the derivative of Rb with respect to sb,m is 0. If
such a point does not exist or the second derivative is
positive, then we must evaluate the end points.

When 1
r ≤ sb,m ≤ 1, we can use the equality ps(ν̂b) =

sb,m to transform Equation A.12 as follows:

Rb =M

(

sb,m ln

(
1

sb,m

)

+ (1− sb,m) ln

(
r− 1

r(1− sb,m)

))

, (A.15)

dRb

dsb,m
=M ln

r(1− sb,m)

(r− 1)sb,m
, (A.16)

d2Rb

ds2
b,m

= −M

(
1

1− sb,m
+

1
sb,m

)

. (A.17)

We note that the second derivative is always nega-
tive for the range that we are considering, so finding a
point at which the derivative is 0 will give us a maxi-
mum at

s∗b,m =
r

2r− 1
. (A.18)

When sb,m ≤
1
r , then the edge length that maximizes

the likelihood for the CFN will be infinite, and ps(ν̂b)=
1
r .

The characters that change state across an edge will not
affect the likelihood ratio because both the NCM model
and the CFN model assign these transitions a probabil-
ity of 1/r. Equation A.12 becomes

Rb =Msb,m ln (r) . (A.19)

Clearly, for this part of the range of sb,m, the log-
likelihood ratio is a linear function of sb,m. Higher values
of sb,m result in larger values of Rb, so the maximum for
this part of the range occurs at the largest value of sb,m.
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Thus, the upper bound on the log-likelihood ratio when
the fraction of characters with no change of state is
≤ 1

r occurs when sb,m =
1
r exactly, and the log-likelihood

ratio value is M ln(r)
r . Note that this value of sb,m was also

considered in the range 1/r ≤ sb,m ≤ 1 above. The value
of s∗b,m given by Equation A.18 results in a higher upper
bound of the log-likelihood ratio. Thus, we can ignore
the range sb,m ≤

1
r in our calculation of the upper bound.

Bounding the difference in AIC between the models.—
Substituting the value of s∗b,m given by Equation A.18
into Equation A.14 and performing substitutions using
Equation A.9 and ps(ν̂b)= sb,m gives us the upper bound
on the per-edge log-likelihood ratio between NCM and
CFN:

R∗b =M ln

(

2−
1
r

)

. (A.20)

Thus, if each branch in the tree has a length that matches
this “worst case” for the CFN compared with the NCM
model, then

R∗ = |E|M ln

(

2−
1
r

)

, (A.21)

where |E| is the number of edges in the tree.
The NCM model has |E|M parameters, whereas the

CFN model has |E| parameters. Thus, we can find the
conditions in which we have proven that AIC will favor
CFN over NCM by testing for when the difference in
the AIC score for NCM model and the AIC for the CFN
model is less than 0. Our upper bound on R∗ allows us
to err on the side of the NCM model—we calculate a
lower bound on the AIC difference, ΔAIC∗NC, between
the NCM and the CFN models:

ΔAIC∗NC = 2 (|E|M− |E| − R∗) (A.22)

= 2|E|(M− 1− R∗b ). (A.23)

The AIC can only prefer the NCM over the CFN model
if ΔAIC∗NC is negative. Thus, we must look for cases in
which the following condition holds:

2|E|(M− 1− R∗b ) < 0, (A.24)

which is equivalent by Equation A.20 to:

M− 1−M ln

(

2−
1
r

)

< 0. (A.25)

Proof of theorem for M > 3.—We will prove the theorem
by contradiction. Suppose that M > 3. Equation A.25
simplifies to:

M− 1
M

< ln

(

2−
1
r

)

. (A.26)

This condition is most easily satisfied when r is ef-
fectively infinite, and the constraint becomes approxi-
mately M−1

M < 0.6931472. However, if M > 3, then the
lowest value that M−1

M can attain is 3/4 (which occurs
when M = 4). The statement that 3/4 < 0.6931472 is a
contradiction, showing thatΔAIC∗NC cannot be negative
when M > 3.

Proof of theorem for M = 3.—To prove the case when M =
3, we have to find a tighter bound for the log-likelihood
ratio in favor of the NCM model than the one given in
Equation A.21. Note that sb,m cannot assume a contin-
uum of values between 0 and 1 but will be constrained
to have fractional values in which the denominator is
M and the numerator is an integer in the range [0,M].
For M = 3, we can see that that sb,m ∈ {0,

1
3 ,

2
3 , 1}. With

these 4 possible values of sb,m in mind, we can return to
Equation A.15 and examine all possible cases.

When sb,m ∈ {0, 1}, the CFN model and NCM model
can achieve the same likelihood for the transitions
across branch b. When sb,m =

1
3 , then

Rb =M

(

sb,mln

(
1

sb,m

)

+ (1− sb,m) ln

(
r− 1

r(1− sb,m)

))

(A.27)

=M

(

ln(3) +
2
3
ln

(
r− 1

2r

))

. (A.28)

The value of Rb resulting from sb,m =
1
3 cannot exceed

approximately 0.63651416M even when r is large.
When sb,m =

2
3 , then

Rb =M

(

ln(3)−
2 ln (2)

3
+
ln
(

r−1
r

)

3

)

. (A.29)

Once again the likelihood ratio becomes largest for large
r and will not exceed ≈ 0.63651416M.

Substituting these tighter bounds for the log-
likelihood ratio into inequality Equation A.24 yields
the condition:

|E| (M− 1− 0.63651416M) < 0. (A.30)

When M = 3, this evaluates to the statement that
0.090457495|E| < 0. This contradiction shows that in-
equality Equation A.24 cannot be met for M = 3 and
thus the AIC will not prefer NCM model over the CFN
model for data sets of 3 characters.

APPENDIX B

Proof of Equation A.8

Examination of Equation A.7 reveals that the contri-
bution of each branch to LC(V̂m|m) can be considered in-
dependently. Here, we show that, for each branch, b, the
MLE of the branch length, ν̂b, is the length that results in
ps(ν̂b) = sb,m. Similar results for the 2-state model were
shown by Alon et al. (2010).
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The likelihood factor associated with a branch, b, will
be denoted Lb. Note that, with this notation, the proba-

bility of any i → j transition for which i ≠ j is 1−ps(ν̂b)
r−1 .

The proportion of characters that change over branch b
is simply 1−sb,m. Equation A.7 and these notational sim-
plifications lead to

ln Lb =M[sb,m ln ps(ν̂b) + (1− sb,m) ln(1− ps(ν̂b))

−(1− sb,m) ln (r− 1)], (B.1)

∂ ln Lb

∂ps(ν̂b)
=M

(
sb,m − ps(ν̂b)

ps(ν̂b)(1− ps(ν̂b))

)

(B.2)

∂2 ln Lb

∂ps(ν̂b)2
=M

(
2ps(ν̂b)sb,m−ps(ν̂b)

2 − sb,m

ps(ν̂b)2(1− ps(ν̂b))2

)

. (B.3)

Clearly, Equation B.2 becomes 0 when ps(ν̂b) = sb,m. This
point is a maximum because the second derivative at the
MLE is negative for the range 0 < p < 1.
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