1,371 research outputs found

    Response and Discrimination Performance of Arrays of Organothiol-Capped Au Nanoparticle Chemiresistive Vapor Sensors

    Get PDF
    The response and discrimination performance of an array that consisted of 20 different organothiol-capped Au nanoparticle chemiresistive vapor sensors was evaluated during exposure to 13 different organic vapors. The passivating organothiol ligand library consisted of collections of straight-chain alkanethiols, branched alkanethiols, and aromatic thiols. A fourth collection of sensors was formed from composites of 2-phenylethanethiol-capped Au nanoparticles and nonpolymeric aromatic materials that were coembedded in a sensor film. The organic vapors consisted of six hydrocarbons (n-hexane, n-heptane, n-octane, isooctane, cyclohexane, and toluene), three polar aprotic vapors (chloroform, tetrahydrofuran, and ethyl acetate), and four alcohols (methanol, ethanol, isopropanol, and 1-butanol). Trends in the resistance response of the sensors were consistent with expected trends in sorption due to the properties of the test vapor and the molecular structure of the passivating ligands in the sensor films. Classification algorithms including principal components analysis and Fisher’s linear discriminant were used to evaluate the discrimination performance of an array of such sensors. Each collection of sensors produced accurate classification of most vapors, with misclassification occurring primarily for vapors that had mutually similar polarity. The classification performance for an array that contained all of the sensor collections produced nearly perfect discrimination for all vapors studied. The dependence of the array size (i.e., the number of sensors) and the array chemical diversity on the discrimination performance indicated that, for an array of 20 sensors, an array size of 13 sensors or more produced the maximum discrimination performance

    Response versus Chain Length of Alkanethiol-Capped Au Nanoparticle Chemiresistive Chemical Vapor Sensors

    Get PDF
    Au nanoparticles capped with a homologous series of straight chain alkanethiols (containing 4−11 carbons in length) have been investigated as chemiresistive organic vapor sensors. The series of alkanethiols was used to elucidate the mechanisms of vapor detection by such capped nanoparticle chemiresistive films and to highlight the molecular design principles that govern enhanced detection. The thiolated Au nanoparticle chemiresistors demonstrated rapid and reversible responses to a set of test vapors (n-hexane, n-heptane, n-octane, iso-octane, cyclohexane, toluene, ethyl acetate, methanol, ethanol, isopropanol, and 1-butanol) that possessed a variety of analyte physicochemical properties. The resistance sensitivity to nonpolar and aprotic polar vapors systematically increased as the chain length of the capping reagent increased. Decreases in the nanoparticle film resistances, which produced negative values of the differential resistance response, were observed upon exposure of the sensor films to alcohol vapors. The response signals became more negative with higher alcohol vapor concentrations, producing negative values of the sensor sensitivity. Sorption data measured on Au nanoparticle chemiresistor films using a quartz crystal microbalance allowed for the measurement of the partition coefficients of test vapors in the Au nanoparticle films. This measurement assumed that analyte sorption only occurred at the organic interface and not the surface of the Au core. Such an assumption produced partition coefficient values that were independent of the length of the ligand. Furthermore, the value of the partition coefficient was used to obtain the particle-to-particle interfacial effective dielectric constant of films upon exposure to analyte vapors. The values of the dielectric constant upon exposure to alcohol vapors suggested that the observed resistance response changes observed were not significantly influenced by this dielectric change, but rather were primarily influenced by morphological changes and by changes in the interparticle spacing

    Boundary states for a free boson defined on finite geometries

    Full text link
    Langlands recently constructed a map that factorizes the partition function of a free boson on a cylinder with boundary condition given by two arbitrary functions in the form of a scalar product of boundary states. We rewrite these boundary states in a compact form, getting rid of technical assumptions necessary in his construction. This simpler form allows us to show explicitly that the map between boundary conditions and states commutes with conformal transformations preserving the boundary and the reality condition on the scalar field.Comment: 16 pages, LaTeX (uses AMS components). Revised version; an analogy with string theory computations is discussed and references adde

    EFFECT OF SEATING CUSHIONS ON PRESSURE DISTRIBUTION IN WHEELCHAIR RACING

    Get PDF
    This study investigated the efficacy of pressure mapping technology in quantifying athlete-wheelchair interaction at the seating interface, and the influence of foam inserts on pressure (peak and average), and contact area. An XSENSOR LX100 pressure mat was located at the seating interface of six nationally ranked wheelchair racing athletes, who performed regular propulsion on treadmill. Substantial inter-athlete variation was observed on resulting pressure distribution (area and magnitude) for all athletes. Implementation of a foam insert did not impede recording ability, however did alter seating characteristics, lowering seating pressure (peak and average), and increasing contact area. This increase may enhance athlete-wheelchair interaction, which will likely result in a more powerful technique, and increased probability of winning races

    Extraction of spatiotemporal response information from sorption-based cross-reactive sensor arrays for the identification and quantification of analyte mixtures

    Get PDF
    Linear sensor arrays made from small molecule/carbon black composite chemiresistors placed in a low headspace volume chamber, with vapor delivered at low flow rates, allowed for the extraction of chemical information that significantly increased the ability of the sensor arrays to identify vapor mixture components and to quantify their concentrations. Each sensor sorbed vapors from the gas stream to various degrees. Similar to gas chromatography, species having high vapor pressures were separated from species having low vapor pressures. Instead of producing typical sensor responses representative of thermodynamic equilibrium between each sensor and an unchanging vapor phase, sensor responses varied depending on the position of the sensor in the chamber and the time from the beginning of the analyte exposure. This spatiotemporal (ST) array response provided information that was a function of time as well as of the position of the sensor in the chamber. The responses to pure analytes and to multi-component analyte mixtures comprised of hexane, decane, ethyl acetate, chlorobenzene, ethanol, and/or butanol, were recorded along each of the sensor arrays. Use of a non-negative least squares (NNLS) method for analysis of the ST data enabled the correct identification and quantification of the composition of 2-, 3-, 4- and 5-component mixtures from arrays using only 4 chemically different sorbent films and sensor training on pure vapors only. In contrast, when traditional time- and position-independent sensor response information was used, significant errors in mixture identification were observed. The ability to correctly identify and quantify constituent components of vapor mixtures through the use of such ST information significantly expands the capabilities of such broadly cross-reactive arrays of sensors

    Observational signatures of a non-singular bouncing cosmology

    Full text link
    We study a cosmological scenario in which inflation is preceded by a bounce. In this scenario, the primordial singularity, one of the major shortcomings of inflation, is replaced by a non-singular bounce, prior to which the universe undergoes a phase of contraction. Our starting point is the bouncing cosmology investigated in Falciano et al. (2008), which we complete by a detailed study of the transfer of cosmological perturbations through the bounce and a discussion of possible observational effects of bouncing cosmologies. We focus on a symmetric bounce and compute the evolution of cosmological perturbations during the contracting, bouncing and inflationary phases. We derive an expression for the Mukhanov-Sasaki perturbation variable at the onset of the inflationary phase that follows the bounce. Rather than being in the Bunch-Davies vacuum, it is found to be in an excited state that depends on the time scale of the bounce. We then show that this induces oscillations superimposed on the nearly scale-invariant primordial spectra for scalar and tensor perturbations. We discuss the effects of these oscillations in the cosmic microwave background and in the matter power spectrum. We propose a new way to indirectly measure the spatial curvature energy density parameter in the context of this model.Comment: 40 pages, 5 figures, typos corrected and reference adde

    Origin and Control of Chemoselectivity in Cytochrome c Catalyzed Carbene Transfer into Si–H and N–H bonds

    Get PDF
    A cytochrome c heme protein was recently engineered to catalyze the formation of carbon–silicon bonds via carbene insertion into Si–H bonds, a reaction that was not previously known to be catalyzed by a protein. High chemoselectivity toward C–Si bond formation over competing C–N bond formation was achieved, although this trait was not screened for during directed evolution. Using computational and experimental tools, we now establish that activity and chemoselectivity are modulated by conformational dynamics of a protein loop that covers the substrate access to the iron–carbene active species. Mutagenesis of residues computationally predicted to control the loop conformation altered the protein’s chemoselectivity from preferred silylation to preferred amination of a substrate containing both N–H and Si–H functionalities. We demonstrate that information on protein structure and conformational dynamics, combined with knowledge of mechanism, leads to understanding of how non-natural and selective chemical transformations can be introduced into the biological world

    Glucosinolates from cruciferous vegetables and their potential role in chronic disease: Investigating the preclinical and clinical evidence

    Get PDF
    An increasing body of evidence highlights the strong potential for a diet rich in fruit and vegetables to delay, and often prevent, the onset of chronic diseases, including cardiometabolic, neurological, and musculoskeletal conditions, and certain cancers. A possible protective component, glucosinolates, which are phytochemicals found almost exclusively in cruciferous vegetables, have been identified from preclinical and clinical studies. Current research suggests that glucosinolates (and isothiocyanates) act via several mechanisms, ultimately exhibiting anti-inflammatory, antioxidant, and chemo-protective effects. This review summarizes the current knowledge surrounding cruciferous vegetables and their glucosinolates in relation to the specified health conditions. Although there is evidence that consumption of a high glucosinolate diet is linked with reduced incidence of chronic diseases, future large-scale placebo-controlled human trials including standardized glucosinolate supplements are needed
    • 

    corecore