8,056 research outputs found

    Improving CMB non-Gaussianity estimators using tracers of local structure

    Get PDF
    Local non-Gaussianity causes correlations between large scale perturbation modes and the small scale power. The large-scale CMB signal has contributions from the integrated Sachs Wolfe (ISW) effect, which does not correlate with the small scale power. If this ISW contribution can be removed, the sensitivity to local non-Gaussianity is improved. Gravitational lensing and galaxy counts can be used to trace the ISW contribution; in particular we show that the CMB lensing potential is highly correlated with the ISW signal. We construct a nearly-optimal estimator for the local non-Gaussianity parameter \fnl and investigate to what extent we can use this to decrease the variance on {\fnl}. We show that the variance can be decreased by up to 20%20\% at Planck sensitivity using galaxy counts. CMB lensing is a good bias-independent ISW tracer for future more sensitive observations, though the fractional decrease in variance is small if good polarization data is also available.Comment: 8 pages, 3 figures. Comments welcom

    Coordinate Confusion in Conformal Cosmology

    Full text link
    A straight-forward interpretation of standard Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmologies is that objects move apart due to the expansion of space, and that sufficiently distant galaxies must be receding at velocities exceeding the speed of light. Recently, however, it has been suggested that a simple transformation into conformal coordinates can remove superluminal recession velocities, and hence the concept of the expansion of space should be abandoned. This work demonstrates that such conformal transformations do not eliminate superluminal recession velocities for open or flat matter-only FRLW cosmologies, and all possess superluminal expansion. Hence, the attack on the concept of the expansion of space based on this is poorly founded. This work concludes by emphasizing that the expansion of space is perfectly valid in the general relativistic framework, however, asking the question of whether space really expands is a futile exercise.Comment: 5 pages, accepted for publication in MNRAS Letter

    Abnormal connectivity between the default mode and the visual system underlies the manifestation of visual hallucinations in Parkinson’s disease:A task-based fMRI study

    Get PDF
    Background: The neural substrates of visual hallucinations remain an enigma, due primarily to the difficulties associated with directly interrogating the brain during hallucinatory episodes. Aims: To delineate the functional patterns of brain network activity and connectivity underlying visual hallucinations in Parkinson’s disease. Methods: In this study, we combined functional magnetic resonance imaging (MRI) with a behavioral task capable of eliciting visual misperceptions, a confirmed surrogate for visual hallucinations, in 35 patients with idiopathic Parkinson’s disease. We then applied an independent component analysis to extract time series information for large-scale neuronal networks that have been previously implicated in the pathophysiology of visual hallucinations. These data were subjected to a task-based functional connectivity analysis, thus providing the first objective description of the neural activity and connectivity during visual hallucinations in patients with Parkinson’s disease. Results: Correct performance of the task was associated with increased activity in primary visual regions; however, during visual misperceptions, this same visual network became actively coupled with the default mode network (DMN). Further, the frequency of misperception errors on the task was positively correlated with the strength of connectivity between these two systems, as well as with decreased activity in the dorsal attention network (DAN), and with impaired connectivity between the DAN and the DMNs, and ventral attention networks. Finally, each of the network abnormalities identified in our analysis were significantly correlated with two independent clinical measures of hallucination severity. Conclusions: Together, these results provide evidence that visual hallucinations are due to increased engagement of the DMN with the primary visual system, and emphasize the role of dysfunctional engagement of attentional networks in the pathophysiology of hallucinations

    Local Data Assimilation in the Estimation of Barotropic and Baroclinic Open Boundary Conditions

    Get PDF
    The problem of data assimilation in the specification of open boundary conditions for limited area models is addressed in this paper. Optimization approaches are detailed, which are based on combining available data on an open boundary with the physics of the hydrodynamical model. In our case the physics is in terms of the flux of energy through the open boundary. These optimized boundary conditions, for both barotropic and baroclinic situations, interpreted physically as special Linearizations of the Bernoulli equation for each normal mode. Because of the complexity of decomposing variables into normal modes for open boundaries with varying bathymetry, we present two alter native approaches. The first is a simplification of the optimized baroclinic boundary condition based on normal modes. The second makes use of empirical orthogonal functions instead of normal modes. The results of testing and comparisons of these approaches are presented for coupling coarse- and fine-resolution models. In this case our approach is in assimilating values and variables from a large-scale model. (along the open boundaries of a limited area model). In the proposed coupling schemes the energy fluxes are estimated either from coarse or from fine-grid model results. With the progress of oceanographic observing systems we would like to explore ways of combining model outputs with the oceanographic measurements in order to estimate energy fluxes used in optimized open boundary conditions

    Solar Water Splitting Cells

    Get PDF
    No abstract

    Intestinal epithelial replacement by transplantation of cultured murine and human cells into the small intestine.

    Get PDF
    Adult intestinal epithelial stem cells are a promising resource for treatment of intestinal epithelial disorders that cause intestinal failure and for intestinal tissue engineering. We developed two different animal models to study the implantation of cultured murine and human intestinal epithelial cells in the less differentiated "spheroid" state and the more differentiated "enteroid" state into the denuded small intestine of mice. Engraftment of donor cells could not be achieved while the recipient intestine remained in continuity. However, we were able to demonstrate successful implantation of murine and human epithelial cells when the graft segment was in a bypassed loop of jejunum. Implantation of donor cells occurred in a random fashion in villus and crypt areas. Engraftment was observed in 75% of recipients for murine and 36% of recipients for human cells. Engrafted spheroid cells differentiated into the full complement of intestinal epithelial cells. These findings demonstrate for the first time successful engraftment into the small bowel which is optimized in a bypassed loop surgical model

    Palmitoylation of Desmoglein 2 Is a Regulator of Assembly Dynamics and Protein Turnover.

    Get PDF
    Desmosomes are prominent adhesive junctions present between many epithelial cells as well as cardiomyocytes. The mechanisms controlling desmosome assembly and remodeling in epithelial and cardiac tissue are poorly understood. We recently identified protein palmitoylation as a mechanism regulating desmosome dynamics. In this study, we have focused on the palmitoylation of the desmosomal cadherin desmoglein-2 (Dsg2) and characterized the role that palmitoylation of Dsg2 plays in its localization and stability in cultured cells. We identified two cysteine residues in the juxtamembrane (intracellular anchor) domain of Dsg2 that, when mutated, eliminate its palmitoylation. These cysteine residues are conserved in all four desmoglein family members. Although mutant Dsg2 localizes to endogenous desmosomes, there is a significant delay in its incorporation into junctions, and the mutant is also present in a cytoplasmic pool. Triton X-100 solubility assays demonstrate that mutant Dsg2 is more soluble than wild-type protein. Interestingly, trafficking of the mutant Dsg2 to the cell surface was delayed, and a pool of the non-palmitoylated Dsg2 co-localized with lysosomal markers. Taken together, these data suggest that palmitoylation of Dsg2 regulates protein transport to the plasma membrane. Modulation of the palmitoylation status of desmosomal cadherins can affect desmosome dynamics
    corecore