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Local data assimilation in the estimation 

of barotropic and baroclinic 
open boundary conditions 

Igor Shulman 
Institute of Marine Sciences, University of Southern Mississippi, Stennis Space Center 

Jarnes K. Lewis 1 
Ocean Physics Research and Development, Long Beach, Mississippi 

John G. Mayer 
Department of Scientific Computing, University of Southern Mississippi, Hattiesburg 

Abstract. The problem of data assimilation in the specification of open boundary 
conditions for limited area models is addressed in this paper. Optimization 
approaches are detailed, which are based on combining available data on an open 
boundary with the physics of the hydrodynamical model. In our case the physics 
is in terms of the flux of energy through the open boundary. These optimized 
boundary conditions, for both barotropic and baroclinic situations, interpreted 
physically as special linearizations of the Bernoulli equation for each normal mode. 
Because of the complexity of decomposing variable:, into normal modes for open 
boundaries with varying bathymetry, we presen'• •.wo alternative approaches. The 
first is a simplification of the optimized baroclinic boundary condition based on 
normal modes. The second makes use of empirical orthogonal functions instead 
of normal modes. The results of testing and comparisons of these approaches 
are presented for coupling coarse- and fine-resolution models. In this case our 
approach is in assimilating values and variables from a large-scale model (along 
the open boundaries of a limited area model). In the proposed coupling schemes 
the energy fluxes are estimated either from coarse or from fine-grid model results. 
With the progress of oceanographic observing systems we would like to explore 
ways of combining model outputs with the oceanographic measurements in order to 
estimate energy fluxes used in optimized open boundary conditions. 

1. Introduction 

The development of limited area coastal models is 
very important for operational predictions in coastal re- 
gions. The treatment of open boundaries is one of the 
most interesting problems to be solved while modeling 
oceanic phenomena, especially in finite coastal ocean ar- 
eas. In most ocean models, open boundary conditions 
(OBCs) are chosen locally, i.e., depending on the so- 
lution of the governing equations near the boundary. 
Many approaches of the local type have been devel- 
oped [Reid and Bodine, 1968; Orlanski, 1976; Chap- 
man, 1985; Blumberg and Kantha, 1985; Flather, 1976]. 
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The results of numerical studies show successful use of 

many local-type boundary conditions in practical appli- 
cations. However, it is known [Oliger and Sundstrom, 
1978; Bennett, 1992] that the local treatment of open 
boundaries for primitive equation hydrostatic models is 
an ill-posed problem in that it is difficult to prove that a 
unique solution exists that is continuously dependent on 
boundary values. During recent years a new approach 
for specifying open boundary conditions for limited area 
ocean models has been developed. This approach starts 
with the work by Bennett and Mcintosh [1982] in which 
data assimilation is used to estimate open boundary 
conditions. With this method, available data in the in- 
terior of a model are combined with model dynamics 
in an inverse problem to determine the open bound- 
ary conditions (in this case the local treatment of open 
boundary conditions is avoided). This technique was 
developed further by Bennett [1992], $eiler [1993], and 
Zou et al. [1993]. Other recent research on this subject 
has been performed by Bogden et al. [1996] and Gunson 

13,667 
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and Malanotte-Rizolli [1996a, b]. The inverse approach 
leads to a stable determination of open boundary con- 
ditions, and successful examples of its applications have 
been shown. Although this inverse method is certainly 
a viable approach, it requires a tremendous amount of 
computer time and memory, significant additions and 
changes to the hydrodynamical model's code (for ex- 
ample, the integration of adjoint equations), and some 
a priori hypotheses about the statistical properties of 
errors in the observations. Because of these factors, 

the development of less optimal but more computa- 
tionally affordable data assimilation methods has been 
pursued for determining open boundary conditions [see, 
e.g., Zou et al., 1995]. 

For barotropic conditions, Shulman and Lewis [1995] 
proposed a local data assimilation approach for speci- 
fying barotropic open boundary conditions. In this ap- 
proach, values of variables on the open boundary can 
be determined via a specific optimization problem that 
provides the best fit to available observations on the 
open boundary and to the flux of energy through the 
open boundary. The optimization problem has the fol- 
lowing physical interpretation: the boundary values are 
estimated by minimization of the potential energy of 
differences between the reference and model variables 

on the open boundary under the constraint of the flux of 
energy through the open boundary. It has been shown 
that the optimized versions of some well-known radia- 
tion boundary conditions [Flather, 1976; Reid and Bo- 
dine, 1968] can be derived using this approach [Shul- 
man and Lewis, 1995]. The optimized versions of these 
barotropic radiation conditions are nonlocal boundary 
conditions that preserve the physics and simplicity of 
the numerical implementation of the original nonopti- 
mized boundary conditions. The results of our previous 
work have shown that these types of optimized bound- 
ary conditions allow a model to be less sensitive to the 

errors in the data being specified at the open bound- 
aries. 

Here we present a second optimized formulation for 
barotropic boundary conditions. In this second formu- 
lation the boundary values are estimated by minimiza- 
tion of the kinetic energy of differences between the ref- 
erence and model variables on an open boundary under 
the constraint of the flux of energy through the open 
boundary. The two barotropi½ methods are shown to 
provide the flexibility of being able to specify vertically 
integrated currents or sea level at an open boundary. 

We also discuss the assimilation of baroclinic infor- 

mation on the basis of an energy flux approach. Many 
models use so-called splitting techniques to separate fast 
moving external gravity waves and slower moving in- 
ternal gravity waves [see Blumber# and Mellor, 1987]. 
In such cases the separation of the vertically integrated 
governing equations (barotropic external mode) and the 
equations governing vertical structure (baroclinic inter- 
nal mode) is introduced. Boundary conditions can be 
formulated for the barotropic and baroclinic modes sep- 
arately and then adjusted to take into account the dif- 
ferent truncation errors for those modes [Blumberg and 

Mellor, 1987]. Moreover, in the baroclinic mode the 
variables can be decomposed into a set of the orthogonal 
modes, and boundary conditions can be prescribed for 
each mode (Jensen, 1993; O'Brien, personal commu- 
nication, 1996). In handling baroclinic boundary con- 
ditions we will follow this philosophy of splitting the 
barotropic and baroclinic modes. Baroclinic optimized 
OBCs are derived in the form of a special linearization 
of the Bernoulli equation for each normal mode. Be- 
cause of the complexity of the decomposition of normal 
modes for varying bathymetry at an open boundary, 
two additional approaches are put forward to derive 
baroclinic boundary conditions. The first is a simpli- 
fied modal baroclinic condition, with this simplification 
representing an average over all the baroclinic modes 
[Shulman and Lewis, 1996]. The second is the use of 
empirical orthogonal functions (EOFs) instead of nor- 
mal modes. The results of testing and comparisons of 
these various approaches (normal mode decomposition, 
the simplified modal baroclinic boundary condition, and 
the use of empirical orthogonal functions) are presented. 

Section 2 and 3 describe the theory and development 
of the barotropic and baroclinic optimized open bound- 
ary conditions. We then move from developmental as- 
pects to applications in section 4. Section 4 presents the 
results of employing optimized baroclinic boundary con- 
ditions over an idealized shelf/shelf slope region for two 
different test cases. These test cases concentrate on the 

baroclinic boundary conditions whereas Shulman and 
Lewis [1995] considered the barotropic boundary condi- 
tions. A discussion and conclusions appear in section 
5. 

2. Approach 

There are many different conditions that could be uti- 
lized on open boundaries. For example, we might choose 
estimates of energy, momentum, or mass fluxes and use 
these estimates in different fashions for developing open 
boundary conditions. In this study we follow Shulman 
and Lewis [1995] and choose energy flux as a constraint 
to be used in developing boundary conditions. As we 
will show this approach works, and the derived bound- 
ary conditions have sound physical interpretations. It 
should be noted that the momentum flux could be uti- 

lized, but this will result in a nonlinear constraint. 
Let us consider the following function P: 

P =p+pa 

where p is pressure, p is density, and i2 is potential en- 
ergy per unit massø Function P can be interpreted as a 
"modified" pressure [Batchelor, 1967, p.176], as a part 
of the Bernoulli function, or as the Montgomery poten- 
tial multiplied by p. According to (1) and the hydro- 
static approximation the modified pressure at depth z • 
(z • is positive upward) has the following representation: 

" Op 
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where ri is the sea surface elevation, g is the gravita- 
tional constant, and Pr is a constant reference density. 
Now suppose we have some data at the open bound- 
aries pertaining to the modified pressure and the out- 
ward normal component of velocity. These reference 

o From these we will values will be denoted as po and u n . 
develop barotropic and baroclinic conditions for open 
boundaries. 

2.1. Barotropic Boundary Conditions 

Let us introduce the following notations' H is the wa- 
ter depth, F is the open boundary, s • F, and u• is the 
outward normal component of the velocity on the open 
boundary at time t. We introduce the following numer- 
ical constraint representing the differences between the 
vertically averaged reference values and the verticalIy 
averaged values from a limited area model (vertically 
averaged values will be denoted by overbars)' 

- fr - _ _ (a) 
Suppose some numerical estimate of Ft is known. In 
this case, Ft can be interpreted as the energy flux on the 
open boundary of the difference between the reference 
and model-predicted values of modified pressure and 
velocity. Consider the following optimization problem 
constrained by the above function Ft 

m_in [J - 0.5/p Hpr(•n - •-•n) 2 ds] (4) 
In terms of physical processes the above problem means 
that we will choose barotropic boundary conditions that 
minimize the kinetic energy of the differences between 
the reference and model velocities on the open bound- 
aries under the constraint of the flux of the energy. Us- 
ing the Lagrangian method [Fletcher, 1987] to solve the 
optimization problem, we minimize 

- _ r•in {J - Pt[ H(P - Pø)(•n - •nn) ds + 

where /•t is a constant (the Lagrangian multiplier). 
Thus the solution of the optimization problem satisfies 
the following optimality condition: 

5J 
•tH(P-Pø)-O 

Introducing ,X t - 1//•t and taking into account that 
8j/8 - fom 

_ (p_ po) 
- + (5) 

where multiplier A t has the dimension of ms- • and can 
be determined by substituting (5) into the constraint 
(3). Equation (5) is the more general form of the results 
presented by Shulman and Lewis [1995]. In this case, (5) 
takes into consideration the impact of the density struc- 

ture of the water column. If we introduce the nondi- 

mensional term • - •x/•/•t and make the Boussinesq 
approximation, the solution becomes the familiar 

•,• - u-• + A•(g/H)«(ri- rl ø) (6) 

which is an optimized form of the open boundary con- 
dition for the barotropic mode put forward by Flather 
[1976] and used in a number of studies. When Ur• - 0, 
condition (6) becomes 

•,• - X?(g/H) « (ri - rl ø) (7) 

Note that condition (7) is the boundary condition intro- 
duced by Reid and Bodine [1968] but with the addition 
of the multiplier 

The above formulations provide a means of specifying 
velocity at an open boundary on the basis of available 
reference data for sea level and/or currents. However, 
we often are faced with the need to specify sea level at 
the open boundary as opposed to velocity. A scheme 
for specifying sea level at the open boundary can be 
also formulated. Instead of the optimization problem 
(equations (3)-(4)), the minimization of the following 
functional can be considered: 

m_in[J- 1 P • (Htg) •/ (T- Pø)2/pr ds] (8) 
under constraint (3). The solution of the optimization 
problem, (3)-(8), has the structure of (5) rewritten for P 
as the unknown. If we neglect the density differences for 
the barotropic mode, we will come up with the following 
optimization problem instead of (3)-(8)' 

min[J - gpr . 

- -gPr H(ri- riø)(•-n- Uøn) ds- Ft (10) 

Problems (9)-(10) have a physical interpretation that 
causes us to choose barotropic boundary conditions that 
minimize the potential energy (instead of kinetic en- 
ergy for (3)-(4)) of the differences between the reference 
and model variables on open boundaries under the con- 
straint of the flux of energy through the open boundary. 
For the solution we again have the optimized form of the 
open boundary condition introduced by Flather [1976] 
but rewritten this time with the sea surface elevation 
as the unknown' 

ri _ rio + A•(H/g)-}(•,• _ •) (11) 

In (11) we use the notation A• for the Lagrange mul- 
tiplier in order to distinguish it from the multiplier X• 
in (6). When u-•n- 0, the boundary condition (11) 
becomes the optimized version of the Reid and Bodine 
[1968] condition but rewritten with the sea surface ele- 
vation as the unknown. The choice of the optimization 
problem (3)-(4) or (9)-(10) and corresponding boundary 
conditions (6) or (11) may be based on the numerical 
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scheme of a hydrodynamical model. In this study we 
use a version of the Blumberg and Mellor [1987] model. 
This model uses the staggered Arakawa C grid; sea sur- 
face elevation is calculated at the center of the grid cell, 
while the velocities are calculated on the sides of the 

grid box. If the open boundary crosses the location of 
the sea surface elevation (center of the grid), the bound- 
ary condition (11) can be used. In this case the r/at the 
open boundary is calculated from (11) using the speci- 
fied r/ø and uø, (perhaps from observations) and un from 
the next interior model grid cell. Then the velocity on 
the open boundary is calculated using the linearized 
momentum equation. In the situation where the open 
boundary crosses the location of velocity the bound- 
ary condition (6) can be used. In this case the velocity 
on the open boundary is specified from (6) by using 
the sea surface elevation calculated from the continuity 
equation and located a half of a grid inside of the open 
boundary. 

2.2. Baroclinic Boundary Conditions 

2.2.1. Baroclinic modes: Modal decomposi- 
tion. We now consider the decomposition of variables 
in the vertical along open boundaries in terms of M 
modes. As such, the variables are asterisked to repre- 
sent values after having subtracted the vertical average 
(e.g., P* - P-P). We begin by representing our mod- 
ified pressures as the sum of normal modes on the open 
boundaries: 

M 

rr•--i 

O* __ 

(12) 

where •,• (z) are the normal modes that are orthogonal 
to each other in that 

n PO 

where po(z) is the basic state of the density stratifica- 
tion on the open boundary. The functions 99,• and 99• 
are the modal amplitudes and allow for the representa- 
tion of the horizontal structure of the modes' 

fø. 
99m (x, y, t) - fo H 7-j•2m (z)dz 

Following along the lines of the work for the barotropic 
mode, we can write the function F• as 

ø,, * _ d -- (t/n t/n 

ß [•,•(s, t)- •ø•(s,t)]ds (14) 

such that F• represents the contribution of the mth 
mode to the energy flux on the open boundary result- 
ing from the differences between the reference and the 

model-predicted values of modified pressure and veloc- 
ity. Suppose we have some estimate of F•. Now we 
choose the following optimization problem constrained 
by the functions 

min [J - 0.5 po(u• - u n ) dz ds] (15) 
u[ H 

As before, we can provide a physical interpretation of 
this optimization problem' boundary values are chosen 
for the baroclinic velocity that minimizes the kinetic en- 
ergy of the differences between the reference and model 
velocities on the open boundary under the constraints 
that represent the contribution of each mode to the en- 
ergy flux on the open boundary. The solution to the 
above optimization problem provides a normal mode 
representation for the velocity on the open boundary 
and has the form 

M i ½,• (z)[g,• (s, t) - 92 (s, t)] u: - + xr p0 m--1 

(16) 

1 

_ F• / [ o[_øu i 2 
ß jfr[•m(s,t) - (17) 

The dimension of .Xp is ms-lo It is shown in Ap- 
pendix A that the average of .Xp is the group veloc- 
ity of the ruth mode. For the ruth mode we introduce 
velocity U,• with the following normal and tangential 
components' 

In this case the modal component for (16) can be rewrit- 
ten in the following form: 

* o* Urn + P•n/Po o, -Um ßUm + P• /po 

where u•n is velocity for the ruth mode, Ur• is refer- 
ence velocity for the ruth mode, P& is the ruth mode 
of the modified pressure (see (12)), and p•o. is the ruth 
mode of the reference modified pressure. The reader 
will recognize both sides of the above expression as a 
linearized form of the Bernoulli equation [Gill, 1982, p. 
276] for each baroclinic mode. Therefore this optimized 
boundary condition can be interpreted as a special lin- 
earization of the Bernoulli equation for each baroclinic 
mode. 

2.2.2. A simplified baroclinic boundary con- 
dition. To numerically implement (16)-(17) we have 
to determine the vertical structure O,•(z). The separa- 
tion of the horizontal and the vertical dependencies for 
varying depths on open boundaries is a rather compli- 
cated problem. If we define a new constraint Ft as the 

M 

sum of the modal constraints, Ft - y],•=x F•, we have 

fr /_ (p, _ po,)(u• - u[*)dzds - Ft (18} H 
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This constraint represents the baroclinic component of 
the flux of energy due to the differences between the 
reference and model-predicted modified pressures and 
normal velocity components. If this constraint is used 
in conjunction with the original baroclinic minimization 
problem (15), then the solution has the form 

o, i (P* - po,) (19) + po 
1 F• 
-- = - (v._vo.), (20) fr f-on 

Again, the Lagrange multiplier At has the dimension of 
velocity and represents some average over the group ve- 
locities for the baroclinic modes on the open boundaries. 
Thus (19)-(20) can be considered as an approximation 
of (16)-(17) and represents a special linearization of the 
Bernoulli equation for the baroclinic part of the velocity 
that does not require the determination of the individ- 
ual baroclinic modes. In shallow coastal areas in which 

the first baroclinic mode plays a dominant role the value 
of At will be close to the value of the group velocity for 
the first baroclinic mode. 

2.2.3. Modal decomposition using empirical 
orthogonal functions (EOFs). As we mentioned 
before, one of the difficulties using normal mode 
composition is determining the vertical structure on an 
open boundary with varying bathymetry. To overcome 
this problem, EOFs can be used to represent the verti- 
cal structure of variables on an open boundary. In EOF 
analysis a set of data can be represented in the following 
form: 

M 

•i(t) - y• 7,•(i)/%•(t) (21) 

where •>i(t) is a value of variable •2 measured at point 
i and time t, M is a number of EOF modes, 7,• are 
orthogonal and normalized functions representing the 
spatial structure, and fi are amplitudes (also orthogo- 
nal) representing the time component. We introduce 
the rr vertical coordinate system: 

(22) 

In a • coordinate system the same number of vertical 
layers is maintained for each grid point in the horizontal 
direction. This allows us to draw an analogy between 
time in (21) and sigma levels. The expansion (equation 
(21)) separates the dependence of position and time. 
We also need to separate the horizontal structure frorn 
the vertical. By replacing time with sigma in an EOF 
analysis we can create the desired result of using EOFs 
to separate the vertical structure from the horizontal 
structure. P* can be represented for each time step as 

M 

where h,•(•r) are orthogonal EOF modes representing 
the vertical structure and /3 represents the horizontal 
structure. The energy flux constraints are 

ß H(s)[fir• (s, t) -/3• (s, t)]ds (24) 

Energy flux E• represents the contribution of mth EOF 
mode to the energy flux on the open boundary resulting 
from the differences between model and referenced val- 

ues of velocities and modified pressure. Using these con- 
straints with the original baroclinic minimization prob- 
lem, (15) the following solution can be obtained: 

ß o. • i hr•(•r)[/?r• (S, t) o , - + - t)] (25) 
r•=• A• p0 

1 

-E• /[/_ø• p•h2• (•) d• 
' Jfr m(s)[fir•(s,t) - fi•(s,t)]2ds] (26) 

3. Some Other Considerations 

In terms of baroclinic boundary conditions, either 
(19)-(20) or (25)-(26) can be easily applied in the case 
where the open boundary crosses the location of the 
velocity. If the open boundary crosses the location of 
temperature or salinity (at the center of the grid cell), 
we can consider a baroclinic optimization problem simi- 
lar to barotropic problems (3)-(8) or (9)-(10)o However, 
in the baroclinic case the use of a condition like (19) 
rewritten with P* as the unknown would be problem- 
atic. This is because of the nonlinear dependence of P* 
on temperature and salinity. Instead of using (19), sup- 
pose we consider a linear approximation of the density 
on the open boundary: 

p -- pr(--CTT + cs$) 

where T and S are temperature and salinity, CT is the 
thermal expansion of the water, and cs is the salinity 
contraction. Let T ø be the reference values of temper- 
ature on the open boundary. Open boundary values 
for temperature can be determined from the following 
optimization problem: 

min JT - p,. 2 cT 
T -•- H Npo2po •(T- Tø)2dzds (27) 

co po(r - rø)(u: - u7 ) - (28) 
H 

where co is the specific heat of the ocean water and 
Npo is the Brunt-Vaisala frequency for p0 density [Gill, 
1982]. T! can be interpreted as the flux of internal en- 
ergy through the open boundary, while JT represents 
the potential energy due to the differences between the 
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T and T ø temperature distributions on the open bound- 
ary. A similar problem can be formulated to determine 
open boundary conditions for salinity. 

Finally, in implementing our optimization methods 
we note that the calculated energy fluxes (F•) only rep- 
resent estimates of their true values. Suppose 5t is the 
error in the estimation of Ft, for example, for problem 
(15)-(18), then Ff - Ft + 5, where Ff is a true, un- 
known value of energy flux. 

Thus we have to provide a best fit to the estimates 
of the energy fluxes in our optimization problems. To 
do this, we employ the regularization method [Shulman 
and Lewis, 1995, 1996; Parker, 1994]. In this case the 
parameter of regularization '/ is introduced, and the 
constrained optimization problem (15)-(18)is reduced 
to the following unconstrained optimization problem: 

minJr - { i[F• + (P* - Pø*)(u• - u[*)dz ds] • u• • H 

+• po(u• - u•*) 2 dz ds} (29) H 

The solution to (29) can be obtained by using the op- 
timality condition 5J•/Su• = 0. The solution of (29) is 
still equation (19): 

i (P*- po.) (30) * o* 

un -- un + • Po 
but with 

1 

•'-•' = fr f-OH (p._po.)• (31) po dzds + 7 
The value of the parameter 7 depends on the value of 
5t. If we know the value of 5t, the value of 3/ can be 
chosen by substituting (30)-(31) into the left side of 
(18) and solving for 7 (when the left side of (18)is 
equal to F• + 5•). In our case, there is a high level of 
uncertainty in determining the norm of the error (St). 
For this reason we used the maximum of the entropy 
integral approach for determining 7. The details of this 
approach are provided in Appendix B. 

4. Numerical Simulations 

4.1. Coupling Fine and Coarse 
Resolution Models 

Optimized open boundary conditiong can be used 
in coupling limited area models (LAM)With coatset 
resolution, larger-domain models. This c6upling can 
be achieved through the choice of reference values of 
boundary variables and through the estimates of en- 
ergy fluxes (F t) on the open boundaries of the LAM. 
TWo schemes can be considered to couple the models. 
In khe first scheme, reference values in the optimiza- 
tion problem are interpolated data from the coarse grid 
model, and the energy flux is estimated from the interior 
solution of the LAM. In the second scheme, reference 
values in the optimization problem are estimated from 
the governing physics of the LAM (for example, by em- 

ploying a modified Orlanski condition [Camerlengo and 
O'Brien, 1980], and the energy flux is estimated from 
the coarse grid model. 

In the first scheme the estimate of energy flux from 
the interior solution of the LAM can be obtained in 

many different ways. For example, energy flux can be 
estimated by moving one grid row inside from open 
boundary. Alternatively, energy fluxes can be calcu- 
lated for n grid rows inside of the open boundary and 
then can be extrapolated to the open boundary. 

The success of OBCs and coupling schemes depends 
on the ability of the models to resolve the internal 
modes with their grid resolutions as well as on the rel- 
ative sizes of the models grid resolutions. This is illus- 
trated in section 4.3 where the results of testing and 
comparison of the coupling schemes are presented. 

4.2. Model 

The model used in this study is a version of the 
Blumberg and Mellor [1987] three-dimensional circula- 
tion model. This model is a primitive equation, free 
surface model. It uses the turbulence closure submodel 

developed by Mellor and Yamada [1982]. Horizontal 
mixing processes are introduced in order to parame- 
terize subgrid scale processes and to damp small-scale 
computational noise. Horizontal viscosity and diffu- 
sivity are introduced in the momentum equations and 
in conservation equations for temperature and salinity. 
The Smagorinsky [1963] formula for horizontal mixing 
is used in which the horizontal diffusivity coefficients 
depend on the grid size and velocity gradients: 

AH --Cdxdy[U• 2 + Vy • + (Uy + V•)2/2] •/• 

where A•/ is the coefficient of horizontal diffusivity, dx 
and dy are grid sizes in x and y directions, U and V 
are horizontal velocity components, subscripts x and 
y denote partial differentiations, and C is a constant 
taken to be 0.1. 

The model uses a curvilinear, orthogonal grid in the 
horizontal and a bottom-following er coordinate grid in 
the vertical. A mode-splitting technique is used in the 
model to separate fast moving external gravity waves 
and slow moving internal gravity waves. In this case 
the separation of the vertically integrated governing 
equations (barotropic, external mode) and the equa- 
tions governing vertical structure (baroclinic, internal 
mode) is introduced. Boundary conditions are formu- 
lated for the barotropic and baroclinic modes separately 
and then adjusted to take into account the different 
truncation errors for those modes [Blumberg and Mel- 
lot, 1987]. For additional information on the model the 
reader is referred to Blumberg and Mellor [1987]. 

4.3. Simulations Over an Idealized Shelf/Slope 

In this section our primary goal is the testing of baro- 
clinic optimized open boundary conditions. 

4.3.1. Test case 1. Simulations were conducted 

for the idealized shelf/slope shown on Figure 1 (top). 
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Figure 1. (top) Model domain for test case 1 with the location of the sections. (bottom) 
Temperature-salinity structure used for the model simulations. Numbers beside each point on 
bottom plot are crt and depth. 

The offshore extent of the model area is 837.5 km. The 

longshore extent consists of three grid points (the first 
and third points are land). Therefore we have a chan- 
nelized flow with motion only in the vertical and on- 
shore/offshore directions. Two models were set up for 
this bathymetry. The first was a finer resolution model 
with an 8.375 km horizontal resolution (100 grid points) 
and 21 levels equally spaced in the vertical. The second 
was a coarser-grid model with a 25.125 km resolution 
and with only 10 evenly spaced levels. 

Both these first two models were run by beginning 
at rest with only vertical variations of temperature and 
salinity (Figure 1, bottom). A bottom roughness of 3 
mm was used in the bottom boundary layer formula- 

tion, and a minimum frictional coefficient of 2.5x10 -a 
was specified. On the open boundary (100th grid point) 
we forced these models with a surface height oscillation 
with an amplitude I m at the M2 tidal frequency. The 
finer-grid model is used to provide us with "truth" ve- 
locities at three locations in the channel (A, B, and C 
in Figure 1, top). They are plotted in Figure 2 in terms 
of the total velocity minus the barotropic velocity for 
layers at depths of 5, 77, 183,590,800, and 930 m. At 
the beginning of the simulation the flow is barotropic. 
Baroclinic modes are eventually generated, first along 
the shelf slope and then propagating offshore. These 
baroclinic velocities are those we wish to reproduce in 
subsequent simulations. 
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Figure 2. Test case 1 total velocity minus barotropic velocity for six layers (5, 77, 183, 590, 
800, and 930 m deep) at three sections in the domain (the letter in the right corner of each plot 
corresponds to the section location on Figure 1). 

The courser-grid model is used to provide us with 
reference information for our optimized open boundary 
schemes. We ran the courser grid model and saved time 
history information on sea surface elevation, barotropic 
and total velocity, temperature, and salinity. This infor- 
mation was interpolated to the location of the 55th grid 
cell of the finer-grid model, and it is these values that 
were used as reference values for open boundary condi- 
tions for a third model. The third model is a LAM that 

consists of only 55 grid cells of the original finer-grid 

model. It has the same horizontal and vertical resolu- 

tion as the larger fine-grid model. This LAM is forced 
in the barotropic mode by using the reference sea level 
and vertically averaged velocity from the courser-grid 
simulation in equation (6) but with •t ø - 1 (i.e., the 
original Flather [1976] boundary condition). Coupling 
in the baroclinic mode is performed by using the two 
coupling schemes described in section 4.1. 

In the framework of each coupling scheme we test 
the simplified baroclinic open boundary condition (19)- 
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(20), a decomposition of variables into orthogonal nor- 
mal modes (16)-(17), and the use of EOF modes (25)- 
(26) instead of normal modes. To compare the results, 
the following relative model skill in prediction of veloc- 
ity is used: 

r uA_u?S 
t=l i=1 

where u/LAM is the velocity from the LAM for layer i, 
u• Bs is the velocity from the first model (larger domain, 
finer grid) for layer i, and A/øBs is the maximum value 
of the baroclinic part of the first model velocity for layer 
i. Therefore the estimate ( represents the relative error 
of the LAM simulation in comparison to the extended 
area run with the same resolution. The results of the 

application of the two coupling schemes are shown in 
Plate 1 (function ( versus time). 

The best results are given by the use of a simplified 
baroclinic boundary condition for scheme 2 (Plate 1, 
curve E). This has the following physical explanation. 
In this problem the internal gravity waves are moving 
in an offshore direction toward the o•en boundary of 
the LAM. The wavelength of the first baroclinic mode 
estimated from the normal mode analysis is • 95.5 km. 
The LAM model (8.375 km grid size and 21 vertical lev- 
els) has enough resolution to resolve this mode, while 
the coarse-grid model (25.125 km grid size and 10 ver- 
tical levels) does not. Thus we would expect a better 
performance from coupling schemes that use a smaller 
amount of information from the coarse grid. Since refer- 
ence values are taken from the coarse model in scheme 

1, while scheme 2 uses only an energy flux estimated 

from the coarse model, scheme 2 results in a superior 
performance in comparison to scheme 1. For this reason 
the simplified baroclinic boundary condition for scheme 
2 (Plate 1, curve E) has the best performance for this 
test. The use of additional (and more erroneous) in- 
formation from the coarse grid as estimates of energy 
fluxes for the normal modes or for EOF (Plate 1, curves 
G and F) increases the error of prediction in compari- 
son to the simplified open boundary condition for this 
scheme. At the same time, in scheme i the use of addi- 
tional accurate information estimated from the fine-grid 
LAM model, as energy fluxes for normal modes or for 
EOF (Plate 1, curves C and D), decreases the error of 
prediction in comparison to the simplified open bound- 
ary condition for this scheme, which uses only the total 
baroclinic energy flux. 

4.3.2. Test case 2. In this test case the perfor- 
mance of optimized open boundary conditions and cou- 
pling schemes is tested for the situation in which inter- 
nal waves are moving in offshore and onshore directions. 
A bell-shaped sea mountain that is ~ 75 km long and 
300 m high was introduced in the extended area outside 
the open boundary of the LAM domain (see Plate 2, 
top). As in test case 1, two extended area models were 
set up for this bathymetry: a fine-resolution model with 
the same resolution as in test case i and a twice-coarser 

resolution model with grid spacing equal to 16.750 km. 
In this case both grids have enough resolution to resolve 
the first baroclinic mode. All other parameters remain 
the same as in test case 1. 

As in previous experiments, both models were forced 
on the open boundary with the surface height oscilla- 
tion with an amplitude i m at the M2 tidal frequency. 
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Plate 1. Test case i coupling of coarse- and fine-resolution models with the use of optimized 
open boundary conditions (error of prediction versus time): A, values for the open boundary of 
the fine-grid are equal to interpolated values from the coarse-grid model; B, scheme i of coupling 
without a modal decomposition; C, scheme I with the use of five EOF modes; D, scheme I with 
the use of five normal modes; E, scheme 2 of coupling without a modal decomposition; F, scheme 
2 with the use of five EOF modes; and G, scheme 2 with the use of five normal modes. 
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The total velocity minus the barotropic velocity for six 
layers are shown on Plate 2 (bottom) for station C. 
Comparison with the test case i (Figure. 2, top panel) 
shows a new baroclinic signal between 30 and 50 hours 
from the beginning simulations. This is internal wave 
moving in an onshore direction as a result of the in- 
teraction of the barotropic tide with the bathymetry 
of the sea mountain. As in test case 1, the sea sur- 
face elevation, barotropic and total velocities, and tem- 
perature and salinity data from the coarse-grid model 
were saved and interpolated to the open boundary of 
the LAM. In the framework of each coupling scheme 
we tested the simplified baroclinic open boundary con- 
dition (19)-(20), a decomposition of variables into or- 
thogonal normal modes (16)-(17), and the use of EOF 
modes (25)-(26)instead of normal modes. The results 
are shown in Plate 3 (function ( versus time). At the 
end of the simulations all coupling schemes with the use 
of the optimized open boundary conditions performed 
better than the nonoptimized condition, as in test case 
1. However, there is little difference in the results be- 
tween the use of coupling schemes I and 2. Also, the use 
of EOF or normal modes did not result in significant im- 
provements in comparison to the simplified versions of 
these schemes. The reasons for this are as follows. The 

duration of simulations (160 hours) was chosen in order 
to avoid spurious reflections of baroclinic waves (first 
mode) from the open boundary of the extended area 
(it takes more than 160 hours for the first baroclinic 
mode to reach the open boundary of the extended area 
domain and come back to the open boundary of the 
LAM). In this case the extended fine-resolution model 
run provides a good estimate of the "exact" solution 
for comparisons with the results of coupling schemes. 
On the other hand it means that in both test cases the 
first baroclinic mode is the most dominant one. There- 

fore the addition of more normal or EOF modes does 

not give improvements in comparison to the simplified 
version of the optimized boundary condition that rep- 
resents, as we show in appendix A, the averaging over 
the baroclinic modes. Also, in test case 2, both fine 
and coarse grids have enough resolution to resolve the 
horizontal variations of the first baroclinic mode. For 

this reason the results of simulations do not show signif- 
icant differences between the application of schemes 1 
or 2. Overall, the results of coupling the fine-resolution 
LAM with the coarse-grid model show that the above 
mentioned two optimized schemes for coupling models 
perform superior to one in which values on the open 
boundary of the LAM are simply equal to the interpo- 
lated ones from the coarse-grid model run. 

5. Discussion and Conclusions 

Methods have been developed for specifying baro- 
tropic and baroclinic open boundary conditions for re- 
gional ocean models. The methodologies provide for 
an optimized determination of variables at the open 
boundaries based on any reference boundary informa- 
tion (from observations, other model simulations, etc.) 

constrained by the physics of the flux of energy at 
the open boundary. Minimization techniques using La- 
grange multipliers are applied to develop formulations 
that drive variables along open boundaries in regional 
models toward reference boundary information. The re- 
sults are constrained to be consistent with the flux of 

energy at the open boundary so that the solution from 
the interior domain of the model influences the values of 

variables along the open boundaries. Minimization for- 
mulations have been developed in the linearized forms 
of the Bernoulli equations for the barotropic as well as 
the baroclinic modes and do not require the a priori 
specification of spatial or temporal scales or the esti- 
mation of phase speeds. Moreover, it is shown that the 
time averages of the Lagrange multipliers represent the 
group velocities for the baroclinic modes in the case of 
the adjustment under gravity of the continuously strat- 
ified incompressible fluid. 

Optimization problems are solved by using the reg- 
ularization approach in order to take into account the 
errors of the data being assimilated. At the same time, 
because of the difficulty of specifying reliable estimates 
of data errors on the open boundary, the approach that 
makes the fewest unnecessary assumptions about errors 
(the method of maximum of entropy integral) was used 
for choosing the regularization parameter. The future 
development of reliable models of errors on the open 
boundary and in its vicinity might improve the appli- 
cation of the regularization approach and improve the 
performance of optimized open boundary conditions. 

Derived open boundary conditions can be interpreted 
as some special flow relaxation schemes [Davies, 1976; 
Martinsen and Engedahl, 1987], where boundary values 
are relaxed toward the reference boundary values. The 
conditions have coefficients of relaxation, Lagrangian 
multipliers (At), which change over time and provide 
the adaptation of the boundary values to the change in 
the energy flux through the open boundary. 

The optimized open boundary conditions result in a 
significant reduction of errors when compared to the 
commonly used nonoptimized schemes. The results of 
the barotropic simulations and sensitivity tests [Shul- 
man and Lewis, 1995; Shulman, 1997] showed that 
the application of optimized versions of radiation open 
boundary conditions reduce significantly the error of 
model predictions compared to the use of nonoptimized 
radiation conditions. Radiation-type open boundary 
conditions transmit the level of errors in the reference 

values into the interior model domain, while the opti- 
mized versions of these conditions correct the energy 
input from the reference values and thus result in a re- 
duction in errors. 

The proposed technology for coupling a fine-resolu- 
tion, limited area model (LAM) with a coarse-resolution 
basin-scale model is based on optimized open boundary 
conditions. Two schemes are used to couple the models. 
In the first scheme, reference values in the optimization 
problem are interpolated results from the coarse-grid 
model, and the energy flux is estimated from interior 
solution of the LAM. In the second scheme, reference 
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values in the optimization problem are estimated frorn 
the governing physics of the LAM (for example, by em- 
ploying a modified Orlanski condition [Camerlengo and 
O'Brien, 1980]), and the energy flux is estimated from 
the coarser-grid model. 

The proposed technology was tested for the case of 
idealized shelf and shelf slope. In the framework of each 
coupling scheme we tested the simplified bar.clinic open 
boundary condition, a decomposition of variables into 
orthogonal normal modes, and the use of EOF modes 
instead of normal modes. In test case 1 the generated 
bar. clinic waves are moving in the offshore direction 
toward the open boundary of the LAM domain. The 
test was constructed in such a way that the coarse- 
grid model does not have enough resolution to resolve 
these bar.clinic modes. The results of coupling a fine- 
resolution LAM with a coarse-grid model show that the 
optimized schemes for coupling models perform better 
when compared to those in which values on the open 
boundary of a LAM are simply equal to the interpolated 
values from the coarse-grid rnodel run. Since the refer- 
ence values are taken from the coarse model in scheme 

1, while scheme 2 uses only an energy flux estirnated 
from the coarse model, scheme 2 results in a superior 
performance in comparison to scheme 1 (see Plate 1). 
The use of additional erroneous information from the 

coarse grid as estirnates of energy fluxes for the norrnal 
or EOF modes (Plate 1, curves G and F) increases the 
error of prediction in comparison to the simplified open 
boundary condition for the second scherne. In scherne 
I the use of additional accurate inforrnation estirnated 

from the fine-grid LAM model as energy fluxes for the 
normal modes or for the EOF (Plate 1, curves C and 
D) decreases the error of prediction in cornparison to 
the simplified open boundary condition for this scherne, 
which uses only the total bar. clinic energy flux. 

In test case 2 the performance of optimized open 
boundary conditions and coupling schemes was tested 
in the case when internal waves are moving in offshore 
and inshore directions. Also, both grids had enough res- 
olution to resolve the first bar. clinic mode. Because of 

this and the fact of the dominance of the first bar.clinic 

mode, the results of simulations did not show significant 
differences between the applications of schemes 1 and 2. 
At the same time both schemes showed perforrnances 
superior to that of the nonoptimized scherne. Overall, 
the results of coupling the fine-resolution LAM with the 
coarse-grid rnodel show that the above rnentioned two 
optirnized schernes for coupling models perforrn supe- 
rior to one in which values on the open boundary of the 
LAM are simply equal to the interpolated ones frorn the 
coarse-grid model run. 

In the proposed coupling schemes the energy fluxes 
are estimated either from coarse- or fine-grid rnodel re- 
sults. In the future we would like to explore a way of 
combining model outputs with the oceanographic rnea- 
surernents in order to estimate energy fluxes used in 
optimized open boundary conditions. 

Appendix A 
Below we show the physical interpretation for La- 

grange multipliers in optimized boundary conditions. It 
is known that the Lagrange multiplier of any constraint 
rneasures the rate of change in the objective function 
with respect to changes in that constraint function. Ac- 
cording to (14)-(15) and (16)-(17)the Lagrange multi- 
plier 1/,Xp rneasures the rate of change in the kinetic 
energy at the open boundary in relation to changes in 
the energy flux of the ruth mode on the open boundary' 

1 5E k 

where 5 denotes a small perturbation in value and E k 
is kinetic energy. If the mod&s are not coupled, we have 

1 5E • 
= (A1) 

where E•m is the kinetic energy of the ruth mode. For 
many waves the following relation is valid [œeBlo•d a•cl 
Mysak, 1978]' 

< >= C?(< > + < >) (^2) 
where < > is the average over the phase, C• is the 
group velocity for the ruth mode, and 6EP• is the change 
in potential energy for the ruth mode on open boundary. 
From (A1) we have' 

< •F/• >•< •7 >< 5S• > (A3) 

In our optimization problem, for each time step the per- 
turbation in F• can be caused only by a perturbation 
in velocity. Therefore we can suppose that 5EP• • O. 
In this case, from (A2) and (A3)it follows that 

Also• the same conclusions can be drawn from the 
consideration of the adjustment under gravity of the 
continuously stratified incompressible fluid [Gill, 1982: 
LeBlond and Mysak, 1978]. Let p' be a small pressure 
perturbation from rest. For simplicity we will work with 
a modified pressure defined as 

? - p + p0½ (^5) 

also, we choose Pø- P. In this case we have 

(p. _po.) (p_pO) p' 
= : -- (A6) 

p0 p0 p0 

! 

where p is a small pressure perturbation from rest, 
which can be represented in normal modes as 

M 

p' - y•. •)rn(Z)T,• (x, y, t) (A7) 
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Consider horizontally propagating waves of the form 

Tr• = Ar• exp (iSr•) (A8) 

where A.• is a constant and S.• - k[ •x + k•y- •t. 
We have the following dispersion relation [LeBlond and 
Mysak, 1978]: 

• • gh•K•+f• - w m- m - l, M (A9) 

where h • is the equivalent depth for the mth mode, 
If• - (k?) = + (k•) =, and f is the Coriolis parameter. 
The horizontal velocity components for this problem 
have the form [LeBlond and Mysak, 1978, pp. 142-143] 

w•k? + i fk• 
• = ½•(•)• exp (ix•) (•10) 

p0(• - f2) 

•: ½•(•)• e•p (ism) (•) 

where u TM and v TM are horizontal velocity components 
for ruth normal mode. Therefore the normal component 
of the velocity on the open boundary has the following 
expression: 

1 

u,•,,• = f2 [(w,•k? + ifk•) cos (n x) p0(.&- ) ' 
+(v:,•k• + i fk? ) cos (n, y)] 
*•m (z)Am exp (iSm) (A12) 

where Um,n is the normal component velocity for the 
ruth mode on the open boundary and cos(n,x) and 
cos(n, y) are cosines between the normal to the open 
boundary and the x and y axes. Now we estimate F• 
(suppose, for simplicity, that uø• * - 0). By substituting 
(A12) into (14) and taking into account (13), we have 
the following expression for F•n: 

1 

F• = -(w• -f2)[(w"•k? +ifk?)cos(n,x) 

+(•:•W + •fW) •os (•, y)] •½• (•)• H 

*J/r A• exp (i2S.•)ds (A13) 
and from (17) we have: 

i 1 

A• = (w• - f•)[(w"•k•' + ifk•)cos(n,x) 
+(w,•k• + i fk? ) cos (n, y)] (A14) 

According to our boundary condition (16), we have 

i •(z) 
u•.• _ •p po •(•. t) 

= i O•(z) A• exp (iSm) (A15) 
• p0 

If we substitute (A14) into (A15), we will get expression 
(A12); therefore the open boundary condition (16)-(17) 
provides the correct continuation of the domain velocity 
to the open boundary. Suppose that k•' - 0 and that 
the open boundary is parallel to the y axis. In this case 
we have 

1 hr%+ K• 
= (A16) 

Therefore according to (A16) and LeBlond and Mysak. 
[1978] we have 

•? - C,•g (A17) 

where C,•g is the group velocity. 

Appendix B 

Below we describe the approach for choosing the 
value of the regularization parameter 7 for the opti- 
mization problem (29)ø We introduce the following no- 
tation: 

7 (B1) (P*-Pø*)2dzds •' fr f ̧. po 
and we will discuss the value of the nondimensional pa- 

* is a solution of rameter p. Suppose that velocity u,•,,• 
the optimization problem when Ft and P* are the exact 
values for the energy flux and pressure. We do not know 

* 

* but we have the function u• (p) from the function u,•,,•, 
(30) with the At from (31). Some norm of the product 
/uOu,•/O/u (corresponding to the first member of the Tay- 
lor series of the difference between u•,(p) and u•,,•) can 
be used to estimate the difference between u[(p) and 
u* and to estimate the optimal value of p and 7. Let 
us introduce the following norm: 

fr f_ Ou[ 2 V 22 - po(p ) d8 

According to (B1), (30) and (31) we have 

Ft 2 112 
9 2 = (p. _po.)2 dzds (1 + ]1) 4 (B2) frf ̧ . po 

Let us introduce the normalized distribution function 

f(p) - 
•(•) 

which is, according to (B2), equal to 

f(p) - 3• 
,L/2 

(1 +]./)4 

We choose the value for p according to the maximum 
entropy method' 

max[-f(p) In f(p)] (B3) 
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In this case by maximizing entropy over all values of/•, 
we are picking a/• that makes the fewest unnecessary 
assumptions (most cautious hypothesis). The solution 
for (B3) is 

• = i (B4) 

7 - dzds (B5) 
H P0 
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