5,416 research outputs found

    Models for the oxidation of silicon

    Get PDF
    Since the 1960's many adaptations to the linear parabolic model for silicon oxidation have been proposed. For the purposes of process engineering, curve fitting procedures which are sometimes devoid of physical content but numerically precise are employed. However, a truly unified physical model which is in quantitative accord with all known facts is still lacking. In this review we will discuss the "facts" and newer models

    Chemical Vapor Deposition of Tin Sulfide from Diorganotin(IV) Dixanthates

    Get PDF
    We report the synthesis and single-crystal X-ray characterization of diphenyltin bis(2-methoxyethylxanthate) and diphenyltin bis(iso-butylxanthate). These xanthates have been used as a single-source precursor to deposit tin chalcogenide thin films by aerosol-assisted chemical vapor deposition. Grazing incidence X-ray diffraction and scanning transmission electron microscope imaging coupled with elemental mapping show that films deposited from diphenyltin bis(iso-butylxanthate) contain orthorhombic SnS, while films deposited from diphenyltin bis(2-methoxyethylxanthate) between 400 and 575 °C form a SnS/SnO2 nanocomposite. In synthesizing the thin films, we have also demonstrated an ability to control the band gap of the materials based on composition and deposition temperature

    Plasma Perturbations and Cosmic Microwave Background Anisotropy in the Linearly Expanding Milne-like Universe

    Full text link
    We expose the scenarios of primordial baryon-photon plasma evolution within the framework of the Milne-like universe models. Recently, such models find a second wind and promise an inflation-free solution of a lot of cosmological puzzles including the cosmological constant one. Metric tensor perturbations are considered using the five-vectors theory of gravity admitting the Friedmann equation satisfied up to some constant. The Cosmic Microwave Background (CMB) spectrum is calculated qualitatively.Comment: 20 page

    Controlling a spillover pathway with the molecular cork effect

    Get PDF
    Spillover of reactants from one active site to another is important in heterogeneous catalysis and has recently been shown to enhance hydrogen storage in a variety of materials. The spillover of hydrogen is notoriously hard to detect or control. We report herein that the hydrogen spillover pathway on a Pd/Cu alloy can be controlled by reversible adsorption of a spectator molecule. Pd atoms in the Cu surface serve as hydrogen dissociation sites from which H atoms can spillover onto surrounding Cu regions. Selective adsorption of CO at these atomic Pd sites is shown to either prevent the uptake of hydrogen on, or inhibit its desorption from, the surface. In this way, the hydrogen coverage on the whole surface can be controlled by molecular adsorption at a minority site, which we term a ‘molecular cork’ effect. We show that the molecular cork effect is present during a surface catalysed hydrogenation reaction and illustrate how it can be used as a method for controlling uptake and release of hydrogen in a model storage system

    Enhancement of low-energy electron emission in 2D radioactive films

    Get PDF
    High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope (125)I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual (125)I atoms into (125)Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic (125)I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies

    The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    Get PDF
    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule's intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the network's enantioselective interaction with other molecules

    Characterization of 3 PET tracers for Quantification of Mitochondrial and Synaptic function in Healthy Human Brain: 18F-BCPP-EF, 11C-SA-4503, 11C-UCB-J

    Get PDF
    Mitochondrial complex 1 (MC1) is involved in maintaining brain bioenergetics, the sigma 1 receptor (σ1R) responds to neuronal stress and synaptic vesicle protein 2A (SV2A) reflects synaptic integrity. Expression of each of these proteins is altered in neurodegenerative diseases. Here we characterise the kinetic behaviour of three positron emission tomography (PET) radioligands 18F-BCPP-EF, 11C-SA-4503 and 11CUCB- J, for the measurement of MC1, σ1R and SV2A, respectively, and determine appropriate analysis workflows for their application in future studies of the in vivo molecular pathology of these diseases. Methods: Twelve human subjects underwent dynamic PET scans including associated arterial blood sampling with each radioligand. A range of kinetic models were investigated to identify an optimal kinetic analysis method for each radioligand and a suitable acquisition duration. Results: All three radioligands readily entered the brain and yielded heterogeneous uptake consistent with the known distribution of the targets. The optimal models determined for the regional estimates of volume of distribution (VT) were multilinear analysis 1 (MA1) and the 2-tissue compartment (2TC) model for 18F-BCPP-EF, MA1 for 11C-SA- 4503, and both MA1 and the 1-tissue compartment (1TC) model for 11C-UCB-J. Acquisition times of 70, 80 and 60 minutes for 18F-BCPP-EF, 11C-SA-4503, 11C-UCB-J, respectively, provided good estimates of regional VT values. An effect of age was observed on 18F-BCPP-EF and 11C-UCB-J signal in the caudate. Conclusion: These ligands can be assessed for their potential to stratify patients or monitor the progression of molecular neuropathology in neurodegenerative diseases

    Madagascar's grasses and grasslands:anthropogenic or natural?

    Get PDF
    Grasses, by their high productivity even under very low pCO2, their ability to survive repeated burning and to tolerate long dry seasons, have transformed the terrestrial biomes in the Neogene and Quaternary. The expansion of grasslands at the cost of biodiverse forest biomes in Madagascar is often postulated as a consequence of the Holocene settlement of the island by humans. However, we show that the Malagasy grass flora has many indications of being ancient with a long local evolutionary history, much predating the Holocene arrival of humans. First, the level of endemism in the Madagascar grass flora is well above the global average for large islands. Second, a survey of many of the more diverse areas indicates that there is a very high spatial and ecological turnover in the grass flora, indicating a high degree of niche specialization. We also find some evidence that there are both recently disturbed and natural stable grasslands: phylogenetic community assembly indicates that recently severely disturbed grasslands are phylogenetically clustered, whereas more undisturbed grasslands tend to be phylogenetically more evenly distributed. From this evidence, it is likely that grass communities existed in Madagascar long before human arrival and so were determined by climate, natural grazing and other natural factors. Humans introduced zebu cattle farming and increased fire frequency, and may have triggered an expansion of the grasslands. Grasses probably played the same role in the modification of the Malagasy environments as elsewhere in the tropics

    3D-printed components for quantum devices

    Get PDF
    Recent advances in the preparation, control and measurement of atomic gases have led to new insights into the quantum world and unprecedented metrological sensitivities, e.g. in measuring gravitational forces and magnetic fields. The full potential of applying such capabilities to areas as diverse as biomedical imaging, non-invasive underground mapping, and GPS-free navigation can only be realised with the scalable production of efficient, robust and portable devices. We introduce additive manufacturing as a production technique of quantum device components with unrivalled design freedom and rapid prototyping. This provides a step change in efficiency, compactness and facilitates systems integration. As a demonstrator we present an ultrahigh vacuum compatible ultracold atom source dissipating less than ten milliwatts of electrical power during field generation to produce large samples of cold rubidium gases. This disruptive technology opens the door to drastically improved integrated structures, which will further reduce size and assembly complexity in scalable series manufacture of bespoke portable quantum devices
    • …
    corecore