5 research outputs found

    <sup>123</sup>I-mIBG scintigraphy in neuroblastoma:development of a SIOPEN semi-quantitative reporting ,method by an international panel

    Get PDF
    PURPOSE: A robust method is required to standardise objective reporting of diagnostic (123)I-mIBG images in neuroblastoma. Prerequisites for an appropriate system are low inter- and intra-observer error and reproducibility across a broad disease spectrum. We present a new reporting method, developed and tested for SIOPEN by an international expert panel. METHOD: Patterns of abnormal skeletal (123)I-mIBG uptake were defined and assigned numerical scores [0–6] based on disease extent within 12 body segments. Uptake intensity was excluded from the analysis. Data sets from 82 patients were scored independently by six experienced specialists as unblinded pairs (pre- and post-induction chemotherapy) and in random order as a blinded study. Response was defined as ≥50 % reduction in post induction score compared with baseline. RESULTS: In total, 1968 image sets were reviewed individually. Response rates of 88 % and 82 % were recorded for patients with baseline skeletal scores ≤23 and 24-48 respectively, compared with 44 % response in patients with skeletal scores >48 (p = 0.02). Reducing the number of segments or extension scale had a small but statistically negative impact upon the number of responses detected. Intraclass correlation coefficients [ICCs] calculated for the unblinded and blinded study were 0.95 at diagnosis and 0.98 and 0.99 post-induction chemotherapy, respectively. CONCLUSIONS: The SIOPEN mIBG score method is reproducible across the full spectrum of disease in high risk neuroblastoma. Numerical assessment of skeletal disease extent avoids subjective evaluation of uptake intensity. This robust approach provides a reliable means with which to examine the role of 123I mIBG scintigraphy as a prognostic indicator in neuroblastoma

    Consensus on molecular imaging and theranostics in neuroendocrine neoplasms

    No full text
    Nuclear medicine plays an increasingly important role in the management neuroendocrine neoplasms (NEN). Somatostatin analogue (SSA)-based positron emission tomography/computed tomography (PET/CT) and peptide receptor radionuclide therapy (PRRT) have been used in clinical trials and approved by the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA). European Association of Nuclear Medicine (EANM) Focus 3 performed a multidisciplinary Delphi process to deliver a balanced perspective on molecular imaging and radionuclide therapy in well-differentiated neuroendocrine tumours (NETs). NETs form in cells that interact with the nervous system or in glands that produce hormones. These cells, called neuroendocrine cells, can be found throughout the body, but NETs are most often found in the abdomen, especially in the gastrointestinal tract. These tumours may also be found in the lungs, pancreas and adrenal glands. In addition to being rare, NETs are also complex and may be difficult to diagnose. Most NETs are non-functioning; however, a minority present with symptoms related to hypersecretion of bioactive compounds. NETs often do not cause symptoms early in the disease process. When diagnosed, substantial number of patients are already found to have metastatic disease. Several societies' guidelines address Neuroendocrine neoplasms (NENs) management; however, many issues are still debated, due to both the difficulty in acquiring strong clinical evidence in a rare and heterogeneous disease and the different availability of diagnostic and therapeutic options across countries. EANM Focus 3 reached consensus on employing 68gallium-labelled somatostatin analogue ([68Ga]Ga-DOTA-SSA)-based PET/CT with diagnostic CT or magnetic resonance imaging (MRI) for unknown primary NET detection, metastatic NET, NET staging/restaging, suspected extra-adrenal pheochromocytoma/paraganglioma and suspected paraganglioma. Consensus was reached on employing 18fluorine-fluoro-2-deoxyglucose ([18F]FDG) PET/CT in neuroendocrine carcinoma, G3 NET and in G1-2 NET with mismatched lesions (CT-positive/[68Ga]Ga-DOTA-SSA-negative). Peptide receptor radionuclide therapy (PRRT) was recommended for second line treatment for gastrointestinal NET with [68Ga]Ga-DOTA-SSA uptake in all lesions, in G1/G2 NET at disease progression, and in a subset of G3 NET provided all lesions are positive at [18F]FDG and [68Ga]Ga-DOTA-SSA. PRRT rechallenge may be used for in patients with stable disease for at least&nbsp;1&nbsp;year after therapy completion. An international consensus is not only a prelude to a more standardised management across countries but also serves as a guide for the direction to follow when designing new research studies

    Publisher Correction: Whole-genome sequencing of a sporadic primary immunodeficiency cohort (Nature, (2020), 583, 7814, (90-95), 10.1038/s41586-020-2265-1)

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper
    corecore