37 research outputs found

    Near-infrared Spectral Characterization of Solar-type Stars in the Northern Hemisphere

    Full text link
    Although solar-analog stars have been studied extensively over the past few decades, most of these studies have focused on visible wavelengths, especially those identifying solar-analog stars to be used as calibration tools for observations. As a result, there is a dearth of well-characterized solar analogs for observations in the near-infrared, a wavelength range important for studying solar system objects. We present 184 stars selected based on solar-like spectral type and V-J and V-K colors whose spectra we have observed in the 0.8-4.2 micron range for calibrating our asteroid observations. Each star has been classified into one of three ranks based on spectral resemblance to vetted solar analogs. Of our set of 184 stars, we report 145 as reliable solar-analog stars, 21 as solar analogs usable after spectral corrections with low-order polynomial fitting, and 18 as unsuitable for use as calibration standards owing to spectral shape, variability, or features at low to medium resolution. We conclude that all but 5 of our candidates are reliable solar analogs in the longer wavelength range from 2.5 to 4.2 microns. The average colors of the stars classified as reliable or usable solar analogs are V-J=1.148, V-H=1.418, and V-K=1.491, with the entire set being distributed fairly uniformly in R.A. across the sky between -27 and +67 degrees in decl.Comment: 19 pages, 8 figures, 2 table

    Blow-up profile of rotating 2D focusing Bose gases

    Full text link
    We consider the Gross-Pitaevskii equation describing an attractive Bose gas trapped to a quasi 2D layer by means of a purely harmonic potential, and which rotates at a fixed speed of rotation Ω\Omega. First we study the behavior of the ground state when the coupling constant approaches a_a\_* , the critical strength of the cubic nonlinearity for the focusing nonlinear Schr{\"o}dinger equation. We prove that blow-up always happens at the center of the trap, with the blow-up profile given by the Gagliardo-Nirenberg solution. In particular, the blow-up scenario is independent of Ω\Omega, to leading order. This generalizes results obtained by Guo and Seiringer (Lett. Math. Phys., 2014, vol. 104, p. 141--156) in the non-rotating case. In a second part we consider the many-particle Hamiltonian for NN bosons, interacting with a potential rescaled in the mean-field manner a_NN2β1w(Nβx),with--a\_N N^{2\beta--1} w(N^{\beta} x), with wapositivefunctionsuchthat a positive function such that \int\_{\mathbb{R}^2} w(x) dx = 1.Assumingthat. Assuming that \beta < 1/2andthat and that a\_N \to a\_*sufficientlyslowly,weprovethatthemanybodysystemisfullycondensedontheGrossPitaevskiigroundstateinthelimit sufficiently slowly, we prove that the many-body system is fully condensed on the Gross-Pitaevskii ground state in the limit N \to \infty$

    X-ray Reverberation Mapping of Ark 564 using Gaussian Process Regression

    Get PDF
    Ark 564 is an extreme high-Eddington Narrow-line Seyfert 1 galaxy, known for being one of the brightest, most rapidly variable soft X-ray AGN, and for having one of the lowest temperature coronae. Here we present a 410-ks NuSTAR observation and two 115-ks XMM-Newton observations of this unique source, which reveal a very strong, relativistically broadened iron line. We compute the Fourier-resolved time lags by first using Gaussian processes to interpolate the NuSTAR gaps, implementing the first employment of multi-task learning for application in AGN timing. By fitting simultaneously the time lags and the flux spectra with the relativistic reverberation model RELTRANS, we constrain the mass at 2.31.3+2.6×106M2.3^{+2.6}_{-1.3} \times 10^6M_\odot, although additional components are required to describe the prominent soft excess in this source. These results motivate future combinations of machine learning, Fourier-resolved timing, and the development of reverberation models.Comment: 19 pages, 9 figures. Accepted for publication in The Astrophysical Journa

    Ageing Intensifies the Care Needs of Adults Living with Parkinson ’s Disease and their Carers

    Get PDF
    Parkinson’s disease (PD) is the second most common neurological disorder in Australia typically affecting people over the age of 65. Few studies of people living with Parkinson’s disease have estimated current hours of home support and unmet needs. In addition no studies have been found that estimate hours of unmet need in terms of functioning or care arrangements or examined whether these estimates differ depending on the viewpoints of carers and the people living with PD whom they care for. In 2007, we surveyed the home care support needs of adults diagnosed with Parkinson’s disease in Western Australia (WA). The survey revealed that adults living with Parkinson’s disease prefer, and can be supported with, home care support services in lieu of residential care placement. As expected, required services increased as functioning decreased. In addition, unmet needs were found to be greater for those with carers irrespective of their level of functional dependency. Unmet needs for weekly services, for people that require home support services, are estimated at 38, 33, 55 and 47 min for personal care, cleaning, social support, and gardening and home maintenance, respectively. The survey also found that most carers and people living with PD agreed that current levels of different types of home care support including nursing were either adequate or insufficient; some carers preferred more services even if the people living with PD were satisfied and some people living with PD wanted more services even if their carers reported needing no extra help. Respite was used by 29 % of people living with PD with carers with two thirds wanting more opportunities for respite. Of the 71 % of people living with PD with carers who had not used respite, less than half stated that they would like to use respite. The 2007 survey was followed by interviews with a sample of survey respondents at different stages of their disorder. In the interviews, most of the people living with Parkinson’s disease commented that continuing to remain at home depended on the rate of degeneration of their disorder as well as the ability of their carers to continue to care. Most of these people and their careers were living day-to-day with a hope that enough support would be made available if and when they need it. As vocal Baby Boomers age, policymakers would do well to acknowledge the diversity of care needs for people with Parkinson’s disease and address the quantum and type of support to meet these needs

    TOI-1695 b:A Water World Orbiting an Early-M Dwarf in the Planet Radius Valley

    Get PDF
    Characterizing the bulk compositions of transiting exoplanets within the M dwarf radius valley offers a unique means to establish whether the radius valley emerges from an atmospheric mass-loss process or is imprinted by planet formation itself. We present the confirmation of such a planet orbiting an early-M dwarf (Tmag = 11.0294 ± 0.0074, Ms = 0.513 ± 0.012 M⊙, Rs = 0.515 ± 0.015 R⊙, and Teff = 3690 ± 50 K): TOI-1695 b (P = 3.13 days and Rp = 1.90−0.14+0.16 R⊕ ). TOI-1695 b’s radius and orbital period situate the planet between model predictions from thermally driven mass loss versus gas depleted formation, offering an important test case for radius valley emergence models around early-M dwarfs. We confirm the planetary nature of TOI-1695 b based on five sectors of TESS data and a suite of follow-up observations including 49 precise radial velocity measurements taken with the HARPS-N spectrograph. We measure a planetary mass of 6.36 ± 1.00 M⊕, which reveals that TOI-1695 b is inconsistent with a purely terrestrial composition of iron and magnesium silicate, and instead is likely a water-rich planet. Our finding that TOI-1695 b is not terrestrial is inconsistent with the planetary system being sculpted by thermally driven mass loss. We present a statistical analysis of seven well-characterized planets within the M dwarf radius valley demonstrating that a thermally driven mass-loss scenario is unlikely to explain this population.</p

    The theory of expanded, extended, and enhanced opportunities for youth physical activity promotion

    Get PDF
    Background Physical activity interventions targeting children and adolescents (≤18 years) often focus on complex intra- and inter-personal behavioral constructs, social-ecological frameworks, or some combination of both. Recently published meta-analytical reviews and large-scale randomized controlled trials have demonstrated that these intervention approaches have largely produced minimal or no improvements in young people\u27s physical activity levels. Discussion In this paper, we propose that the main reason for previous studies\u27 limited effects is that fundamental mechanisms that lead to change in youth physical activity have often been overlooked or misunderstood. Evidence from observational and experimental studies is presented to support the development of a new theory positing that the primary mechanisms of change in many youth physical activity interventions are approaches that fall into one of the following three categories: (a) the expansion of opportunities for youth to be active by the inclusion of a new occasion to be active, (b) the extension of an existing physical activity opportunity by increasing the amount of time allocated for that opportunity, and/or (c) the enhancement of existing physical activity opportunities through strategies designed to increase physical activity above routine practice. Their application and considerations for intervention design and interpretation are presented. Summary The utility of these mechanisms, referred to as the Theory of Expanded, Extended, and Enhanced Opportunities (TEO), is demonstrated in their parsimony, logical appeal, support with empirical evidence, and the direct and immediate application to numerous settings and contexts. The TEO offers a new way to understand youth physical activity behaviors and provides a common taxonomy by which interventionists can identify appropriate targets for interventions across different settings and contexts. We believe the formalization of the TEO concepts will propel them to the forefront in the design of future intervention studies and through their use, lead to a greater impact on youth activity behaviors than what has been demonstrated in previous studies

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Host hindrance to HIV-1 replication in monocytes and macrophages

    Get PDF
    Monocytes and macrophages are targets of HIV-1 infection and play critical roles in multiple aspects of viral pathogenesis. HIV-1 can replicate in blood monocytes, although only a minor proportion of circulating monocytes harbor viral DNA. Resident macrophages in tissues can be infected and function as viral reservoirs. However, their susceptibility to infection, and their capacity to actively replicate the virus, varies greatly depending on the tissue localization and cytokine environment. The susceptibility of monocytes to HIV-1 infection in vitro depends on their differentiation status. Monocytes are refractory to infection and become permissive upon differentiation into macrophages. In addition, the capacity of monocyte-derived macrophages to sustain viral replication varies between individuals. Host determinants regulate HIV-1 replication in monocytes and macrophages, limiting several steps of the viral life-cycle, from viral entry to virus release. Some host factors responsible for HIV-1 restriction are shared with T lymphocytes, but several anti-viral mechanisms are specific to either monocytes or macrophages. Whilst a number of these mechanisms have been identified in monocytes or in monocyte-derived macrophages in vitro, some of them have also been implicated in the regulation of HIV-1 infection in vivo, in particular in the brain and the lung where macrophages are the main cell type infected by HIV-1. This review focuses on cellular factors that have been reported to interfere with HIV-1 infection in monocytes and macrophages, and examines the evidences supporting their role in vivo, highlighting unique aspects of HIV-1 restriction in these two cell types

    AGN STORM 2. VIII. Investigating the Narrow Absorption Lines in Mrk 817 Using HST-COS Observations*

    Get PDF
    We observed the Seyfert 1 galaxy Mrk 817 during an intensive multiwavelength reverberation mapping campaign for 16 months. Here, we examine the behavior of narrow UV absorption lines seen in the Hubble Space Telescope/Cosmic Origins Spectrograph spectra, both during the campaign and in other epochs extending over 14 yr. We conclude that, while the narrow absorption outflow system (at −3750 km s−1 with FWHM = 177 km s−1) responds to the variations of the UV continuum as modified by the X-ray obscurer, its total column density (log NH = 19.5 - + 0.13 0.61 cm−2 ) did not change across all epochs. The adjusted ionization parameter (scaled with respect to the variations in the hydrogen-ionizing continuum flux) is log UH = −1.0 - + 0.3 0.1. The outflow is located at a distance smaller than 38 pc from the central source, which implies a hydrogen density of nH > 3000 cm−3. The absorption outflow system only covers the continuum emission source and not the broad emission line region, which suggests that its transverse size is small (< 1016 cm), with potential cloud geometries ranging from spherical to elongated along the line of sight

    Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.

    Get PDF
    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease
    corecore