49 research outputs found

    Cold Molecule Spectroscopy for Constraining the Evolution of the Fine Structure Constant

    Full text link
    We report precise measurements of ground-state, λ\lambda-doublet microwave transitions in the hydroxyl radical molecule (OH). Utilizing slow, cold molecules produced by a Stark decelerator we have improved over the precision of the previous best measurement by twenty-five-fold for the F' = 2 \to F = 2 transition, yielding (1 667 358 996 ±\pm 4) Hz, and by ten-fold for the F' = 1 \to F = 1 transition, yielding (1 665 401 803 ±\pm 12) Hz. Comparing these laboratory frequencies to those from OH megamasers in interstellar space will allow a sensitivity of 1 ppm for Δα/α\Delta\alpha/\alpha over \sim101010^{10} years.Comment: This version corrects minor typos in the Zeeman shift discussio

    Disproportionate cardiac hypertrophy during early postnatal development in infants born preterm.

    Get PDF
    Background Adults born very preterm have increased cardiac mass and reduced function. We investigated whether a hypertrophic phenomenon occurs in later preterm infants and when this occurs during early development. Methods Cardiac ultrasound was performed on 392 infants (33% preterm at mean gestation 34±2 weeks). Scans were performed during fetal development in 137, at birth and 3 months of postnatal age in 200, and during both fetal and postnatal development in 55. Cardiac morphology and function was quantified and computational models created to identify geometric changes. Results At birth, preterm offspring had reduced cardiac mass and volume relative to body size with a more globular heart. By 3 months, ventricular shape had normalized but both left and right ventricular mass relative to body size were significantly higher than expected for postmenstrual age (left 57.8±41.9 vs. 27.3±29.4%, P<0.001; right 39.3±38.1 vs. 16.6±40.8, P=0.002). Greater changes were associated with lower gestational age at birth (left P<0.001; right P=0.001). Conclusion Preterm offspring, including those born in late gestation, have a disproportionate increase in ventricular mass from birth up to 3 months of postnatal age. These differences were not present before birth. Early postnatal development may provide a window for interventions relevant to long-term cardiovascular health

    TRIM33 switches off Ifnb1 gene transcription during the late phase of macrophage activation

    Get PDF
    Despite its importance during viral or bacterial infections, transcriptional regulation of the interferon-β gene (Ifnb1) in activated macrophages is only partially understood. Here we report that TRIM33 deficiency results in high, sustained expression of Ifnb1 at late stages of toll-like receptor-mediated activation in macrophages but not in fibroblasts. In macrophages, TRIM33 is recruited by PU.1 to a conserved region, the Ifnb1 Control Element (ICE), located 15 kb upstream of the Ifnb1 transcription start site. ICE constitutively interacts with Ifnb1 through a TRIM33-independent chromatin loop. At late phases of lipopolysaccharide activation of macrophages, TRIM33 is bound to ICE, regulates Ifnb1 enhanceosome loading, controls Ifnb1 chromatin structure and represses Ifnb1 gene transcription by preventing recruitment of CBP/p300. These results characterize a previously unknown mechanism of macrophage-specific regulation of Ifnb1 transcription whereby TRIM33 is critical for Ifnb1 gene transcription shutdown

    Demonstration of quantum volume 64 on a superconducting quantum computing system

    Full text link
    We improve the quality of quantum circuits on superconducting quantum computing systems, as measured by the quantum volume, with a combination of dynamical decoupling, compiler optimizations, shorter two-qubit gates, and excited state promoted readout. This result shows that the path to larger quantum volume systems requires the simultaneous increase of coherence, control gate fidelities, measurement fidelities, and smarter software which takes into account hardware details, thereby demonstrating the need to continue to co-design the software and hardware stack for the foreseeable future.Comment: Fixed typo in author list. Added references [38], [49] and [52

    From Geometry to Numerics: interdisciplinary aspects in mathematical and numerical relativity

    Full text link
    This article reviews some aspects in the current relationship between mathematical and numerical General Relativity. Focus is placed on the description of isolated systems, with a particular emphasis on recent developments in the study of black holes. Ideas concerning asymptotic flatness, the initial value problem, the constraint equations, evolution formalisms, geometric inequalities and quasi-local black hole horizons are discussed on the light of the interaction between numerical and mathematical relativists.Comment: Topical review commissioned by Classical and Quantum Gravity. Discussion inspired by the workshop "From Geometry to Numerics" (Paris, 20-24 November, 2006), part of the "General Relativity Trimester" at the Institut Henri Poincare (Fall 2006). Comments and references added. Typos corrected. Submitted to Classical and Quantum Gravit

    Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge.

    Get PDF
    BACKGROUND: The medium-term effects of Coronavirus disease (COVID-19) on organ health, exercise capacity, cognition, quality of life and mental health are poorly understood. METHODS: Fifty-eight COVID-19 patients post-hospital discharge and 30 age, sex, body mass index comorbidity-matched controls were enrolled for multiorgan (brain, lungs, heart, liver and kidneys) magnetic resonance imaging (MRI), spirometry, six-minute walk test, cardiopulmonary exercise test (CPET), quality of life, cognitive and mental health assessments. FINDINGS: At 2-3 months from disease-onset, 64% of patients experienced breathlessness and 55% reported fatigue. On MRI, abnormalities were seen in lungs (60%), heart (26%), liver (10%) and kidneys (29%). Patients exhibited changes in the thalamus, posterior thalamic radiations and sagittal stratum on brain MRI and demonstrated impaired cognitive performance, specifically in the executive and visuospatial domains. Exercise tolerance (maximal oxygen consumption and ventilatory efficiency on CPET) and six-minute walk distance were significantly reduced. The extent of extra-pulmonary MRI abnormalities and exercise intolerance correlated with serum markers of inflammation and acute illness severity. Patients had a higher burden of self-reported symptoms of depression and experienced significant impairment in all domains of quality of life compared to controls (p<0.0001 to 0.044). INTERPRETATION: A significant proportion of patients discharged from hospital reported symptoms of breathlessness, fatigue, depression and had limited exercise capacity. Persistent lung and extra-pulmonary organ MRI findings are common in patients and linked to inflammation and severity of acute illness. FUNDING: NIHR Oxford and Oxford Health Biomedical Research Centres, British Heart Foundation Centre for Research Excellence, UKRI, Wellcome Trust, British Heart Foundation

    Directed assembly of complex shaped particles at fluid interfaces

    No full text
    Particles situated at fluid interfaces occur in nature, with the particles ranging from pollen to insects which walk on water. Particles at interfaces are exploited in classical applications like Pickering emulsions, in which particles stabilize emulsions, and froth flotation, in which ore particle adsorption to fluid interfaces is used as a means of separating and recovering metal ores. They also occur in emerging applications in which nanomaterials are organized at interfaces. In this thesis, the assembly of particles into ordered structures via capillary interactions is studied. Early work in this field focused primarily on spherical particles that distort fluid interfaces and create excess area. The particles assembled by capillary interactions which occur because the excess area created by the particles decreases as the particles approach each other. In this thesis, particles with shape anisotropy are studied. Such particles create undulations with excess area that can be locally elevated at certain locations around the particle. The local elevation of excess area makes these sites locations for preferred assembly. Hence, particles can orient and aggregate in preferred orientations. Such self assembly is often termed directed assembly. Three key issues in directed assembly are means of controlling the object orientation, alignment, and the sites for preferred assembly, including means of promoting registry of features on particles. Each of these issues is addressed in detail in for the example of a right circular cylinder using analysis, experiment and numerics. A series of other shapes are then studied to illustrate the generality of the concepts developed. Anisotropic particles can have non-unique orientations at fluid interfaces which satisfy mechanical equilibrium. For example, a cylinder placed on a fluid interface can assume an end-on or side-on orientation, or it can immerse itself in the surrounding bulk phases. Any of these orientations can satisfy a mechanical force balance when the particle is small enough that gravitational effects are negligible. The stable orientation is determined by the surface energies of the fluid-solid, fluid-vapor and vapor-solid surfaces. A comparison of the energy of each state allows phase diagrams to be defined in terms of the scaled aspect ratio [special characters omitted] and the contact angle &thetas;*, where Lcyl and Rcyl denote the cylinder length and radius, respectively. Line tension can also influence the orientations by changing the equilibrium contact angle &thetas;* and by increasing the energetic cost of the contact line. Phase diagrams accounting for positive line tensions Σ are also constructed. These phase diagrams can be divided into two classes. In the first, over some range of x and Σ cylinders can be driven from side-on to end-on orientations with increasing˜ Σ. This transition terminates at a triple point where the side-on, end-on and immersed energies are the same. In the second class, there is no triple point and, for a range of Σ values, cylinders of all aspect ratios x prefer an end-on orientation. In all cases, for high enough Σ, line tension drives a wetting transition similar to that already noted in the literature for spherical particles. The zero line tension predictions are compared favorably to experiment on the nanoscale and on the microscale. In the nanoscale experiments, functionalized gold nanowires made by template synthesis are spread at aqueous-gas interfaces, immobilized using a gel-fixation technique, and observed by SEM. The small aspect ratio particles (disks) were in an end-on configuration, while the longer nanowires were in a side-on orientation, in agreement with the theory. On the microscale, cylinders made using photolithographic techniques orient in agreement with prediction. Anisotropic particles have preferred alignment on interfaces with unequal principle radii of curvature. Thus, the underlying shape of a fluid interface can be used to influence the assemblies that form. Depending on the shape of the interface, particles have different preferred alignments. This concept is developed by considering micron-scale cylindrical particles at air-water interfaces with unequal principle radii of curvature and observing the rotation and alignment by optical microscopy. (Abstract shortened by UMI.

    Combined Molecular Dynamics Simulation–Molecular-Thermodynamic Theory Framework for Predicting Surface Tensions

    No full text
    A molecular modeling approach is presented with a focus on quantitative predictions of the surface tension of aqueous surfactant solutions. The approach combines classical Molecular Dynamics (MD) simulations with a molecular-thermodynamic theory (MTT) [Y. J. Nikas, S. Puvvada, D. Blankschtein, Langmuir 1992, 8, 2680]. The MD component is used to calculate thermodynamic and molecular parameters that are needed in the MTT model to determine the surface tension isotherm. The MD/MTT approach provides the important link between the surfactant bulk concentration, the experimental control parameter, and the surfactant surface concentration, the MD control parameter. We demonstrate the capability of the MD/MTT modeling approach on nonionic alkyl polyethylene glycol surfactants at the air–water interface and observe reasonable agreement of the predicted surface tensions and the experimental surface tension data over a wide range of surfactant concentrations below the critical micelle concentration. Our modeling approach can be extended to ionic surfactants and their mixtures with both ionic and nonionic surfactants at liquid–liquid interfaces
    corecore