1,855 research outputs found

    New ideas and trends in deep multimodal content understanding: a review

    Get PDF
    The focus of this survey is on the analysis of two modalities of multimodal deep learning: image and text. Unlike classic reviews of deep learning where monomodal image classifiers such as VGG, ResNet and Inception module are central topics, this paper will examine recent multimodal deep models and structures, including auto-encoders, generative adversarial nets and their variants. These models go beyond the simple image classifiers in which they can do uni-directional (e.g. image captioning, image generation) and bi-directional (e.g. cross-modal retrieval, visual question answering) multimodal tasks. Besides, we analyze two aspects of the challenge in terms of better content understanding in deep multimodal applications. We then introduce current ideas and trends in deep multimodal feature learning, such as feature embedding approaches and objective function design, which are crucial in overcoming the aforementioned challenges. Finally, we include several promising directions for future research.Computer Systems, Imagery and Medi

    Spin orbit torque induced asymmetric depinning of chiral Néel domain wall in Co/Ni heterostructures

    Get PDF
    In this letter, we report on distinct depinning of a chiral Néel domain wall (DW) driven by spin-orbit torque (SOT) in Co/Ni nanowires with symmetric potential barriers. In these structures, DW propagation was shown to be in the opposite direction to the electron flow as evidenced from current assisted DW depinning measurements. A transition from field dominated DW depinning to SOT dominated DW depinning was observed as the bias current was increased. For SOT dominated DW depinning, the Up-Down DW exhibits a larger depinning field as compared to the Down-Up DW. This is attributed to the interplay between the SOT and Dzyaloshinskii-Moriya interaction in the structure

    Asymmetrical domain wall propagation in bifurcated PMA wire structure due to the Dzyaloshinskii-Moriya interaction

    Get PDF
    Controlling domain wall (DW) motion in complex magnetic network structures is of paramount significance for the development of spin-based devices. Here, we report on the dynamics of a propagating DW in a bifurcated ferromagnetic wire with perpendicular magnetic anisotropy (PMA). The Dzyaloshinskii-Moriya interaction (DMI) in the wire structure induces a tilt angle to the injected DW, which leads to a quasi-selective propagation through the network branch. The DW tilting causes a field interval between DWs to arrive at Hall bars in the individual branches. Micromagnetic results further show that by tailoring the strength of the DMI, the control of DW dynamics in the PMA complex network structures can be achieved

    Band structure of hydrogenated Si nanosheets and nanotubes

    Full text link
    The band structure of fully hydrogenated Si nanosheets and nanotubes are elucidated by the use of an empirical tight-binding model. The hydrogenated Si sheet is a semiconductor with indirect band gap of about 2.2 eV. The symmetries of the wave functions allow us to explain the origin of the gap. We predict that, for certain chiralities, hydrogenated Si nanotubes represent a new type of semiconductor, one with co-existing direct and indirect gaps of exactly the same magnitude. This behavior is different from the Hamada rule established for non-hydrogenated carbon and silicon nanotubes. Comparison to an ab initio calculation is made.Comment: 9 pages, 4 figures, to appear in J. Phys.: Condens. Matte

    Exsolution enhancement of metal-support co oxidation perovskite catalyst with parameter modification

    Get PDF
    This study aimed to further tune the capability of active metal exsolution onto the surface of the CO oxidative perovskite catalyst La0.7Ce0.1Co0.3Ni0.1Ti0.6O3 by tuning the reducing parameter. Under same calcination temperature of 800℃, XRD analysis shown that the precursors with calcination duration of 6 hours (S2T8H6) was able to achieve similar crystalline structure to those with calcination duration of 12 hours (S2T8H12). In order for the active metal (CoNi) to be exsolved onto the perovskite surface, reducing parameter such as temperature and duration are deemed crucial to the reduction process. The exsolution of the active metals was observed when the samples were treated under reducing condition with varying temperatures of 550℃ and 700℃ and duration from 200 to 300 minutes. Through comparison with their EDX readings, S2T8H6 treated under 700℃ and 300 minutes (S2T8H6-R7H5) achieved the highest weight percentage of surface Cobalt and Nickel of 3.83 and 2.81. It was clear that by tuning the temperature and duration of reduction, the exsolution of the active metals onto the surface of the perovskite could be improved resulting in better exposure and dispersion of active metals onto the surface of catalyst

    Spatial mapping of band bending in semiconductor devices using in-situ quantum sensors

    Get PDF
    Band bending is a central concept in solid-state physics that arises from local variations in charge distribution especially near semiconductor interfaces and surfaces. Its precision measurement is vital in a variety of contexts from the optimisation of field effect transistors to the engineering of qubit devices with enhanced stability and coherence. Existing methods are surface sensitive and are unable to probe band bending at depth from surface or bulk charges related to crystal defects. Here we propose an in-situ method for probing band bending in a semiconductor device by imaging an array of atomic-sized quantum sensing defects to report on the local electric field. We implement the concept using the nitrogen-vacancy centre in diamond, and map the electric field at different depths under various surface terminations. We then fabricate a two-terminal device based on the conductive two-dimensional hole gas formed at a hydrogen-terminated diamond surface, and observe an unexpected spatial modulation of the electric field attributed to a complex interplay between charge injection and photo-ionisation effects. Our method opens the way to three-dimensional mapping of band bending in diamond and other semiconductors hosting suitable quantum sensors, combined with simultaneous imaging of charge transport in complex operating devices.Comment: This is a pre-print of an article published in Nature Electronics. The final authenticated version is available online at https://dx.doi.org/10.1038/s41928-018-0130-

    Cloud Atlas: Weak Color Modulations Due to Rotation in the Planetary-mass Companion GU Psc b and 11 Other Brown Dwarfs

    Get PDF
    Among the greatest challenges in understanding ultracool brown dwarf and exoplanet atmospheres is the evolution of cloud structure as a function of temperature and gravity. In this study, we present the rotational modulations of GU Psc b—a rare mid-T spectral type planetary-mass companion at the end of the L/T spectral type transition. Based on the Hubble Space Telescope/WFC3 1.1–1.67 μm time-series spectra, we observe a quasi-sinusoidal light curve with a peak-to-trough flux variation of 2.7% and a minimum period of 8 h. The rotation-modulated spectral variations are weakly wavelength-dependent, or largely gray between 1.1 and 1.67 μm. The gray modulations indicate that heterogeneous clouds are present in the photosphere of this low-gravity mid-T dwarf. We place the color and brightness variations of GU Psc b in the context of rotational modulations reported for mid-L to late-T dwarfs. Based on these observations, we report a tentative trend: mid-to-late T dwarfs become slightly redder in J − H color with increasing J-band brightness, while L dwarfs become slightly bluer with increasing brightness. If this trend is verified with more T-dwarf samples, it suggests that in addition to the mostly gray modulations, there is a second-order spectral-type dependence on the nature of rotational modulations

    Deep image retrieval: a survey

    Get PDF
    In recent years a vast amount of visual content has been generated and shared from various fields, such as social media platforms, medical images, and robotics. This abundance of content creation and sharing has introduced new challenges. In particular, searching databases for similar content, i.e.content based image retrieval (CBIR), is a long-established research area, and more efficient and accurate methods are needed for real time retrieval. Artificial intelligence has made progress in CBIR and has significantly facilitated the process of intelligent search. In this survey we organize and review recent CBIR works that are developed based on deep learning algorithms and techniques, including insights and techniques from recent papers. We identify and present the commonly-used benchmarks and evaluation methods used in the field. We collect common challenges and propose promising future directions. More specifically, we focus on image retrieval with deep learning and organize the state of the art methods according to the types of deep network structure, deep features, feature enhancement methods, and network fine-tuning strategies. Our survey considers a wide variety of recent methods, aiming to promote a global view of the field of instance-based CBIR. Computer Systems, Imagery and Medi

    Antioxidant-mediated protective role of Hericium erinaceus (Bull.: Fr.) Pers. against oxidative damage in fibroblasts from Friedreich’s ataxia patient

    Get PDF
    Friedreich’s ataxia (FRDA) is a progressive neuromuscular disorder caused by substantial decrease of mitochondrial protein frataxin responsible for biogenesis of iron-sulphur clusters and protection from oxidative damage. In this study, we investigated the antioxidant activities of a standardized aqueous extract from fruiting bodies of Hericium erinaceus mushroom (HESAE) and its protective effects against oxidative damage induced by L-Buthionine sulfoximine (BSO) in fibroblasts derived from FRDA patient. The lactate dehydrogenase-based viability assay showed that FRDA fibroblast was sensitive to 12.5 mM BSO with a reduction of viability to 52.51 ± 13.92% after 24 h of BSO exposure. Interestingly, co-incubation with 32 mg/mL HESAE increased the viability to 85.35 ± 3.4%. Further, 12.5 mM BSO caused a decrease in the ratio of cellular reduced glutathione (GSH) to oxidised GSH (GSSG) that leads to cell death. Nevertheless, the damage was reduced by co-incubation with 32 mg/mL HESAE. Nuclear fluorescence staining revealed that 12.5 mM BSO induced cell death and the apoptosis was decreased by co-incubation with HESAE. These findings suggest the ability of HESAE in attenuating BSO-mediated cytotoxicity through maintenance of membrane integrity and optimal GSH/GSSG ratio, that are closely linked to its antioxidant activities. Further in vivo trials are highly warranted to clarify its potential benefits in management of FRDA
    corecore