420 research outputs found

    Probing thermalization and dynamics of high-energy quasiparticles in a superconducting nanowire by scanning critical current microscopy

    Full text link
    Besides its fundamental interest, understanding the dynamics of pair breaking in superconducting nanostructures is a central issue to optimize the performances of superconducting devices such as qubits or photon detectors. However, despite substantial research efforts, these dynamics are still not well understood as this requires experiments in which quasiparticles are injected in a controlled fashion. Until now, such experiments have employed solid-state tunnel junctions with a fixed tunnel barrier. Here we use instead a cryogenic scanning tunnelling microscope to tune independently the energy and the rate of quasiparticle injection through, respectively, the bias voltage and the tunnelling current. For high energy quasiparticles, we observe the reduction of the critical current of a nanowire and show it is mainly controlled by the injected power and, marginally, by the injection rate. Our results prove a thermal mechanism for the reduction of the critical current and unveil the rapid dynamics of the generated hot spot.Comment: 25 pages, 14 figure

    Phonons in the multiferroic langasite Ba_3\_3NbFe_3\_3Si_2\_2O_14\_{14} : evidences for symmetry breaking

    Get PDF
    The chiral langasite Ba_3\_3NbFe_3\_3Si_2\_2O_14\_{14} is a multiferroic compound. While its magnetic order below T_N\_N=27 K is now well characterised, its polar order is still controversial. We thus looked at the phonon spectrum and its temperature dependence to unravel possible crystal symmetry breaking. We combined optical measurements (both infrared and Raman spectroscopy) with ab initio calculations and show that signatures of a polar state are clearly present in the phonon spectrum even at room temperature. An additional symmetry lowering occurs below 120~K as seen from emergence of softer phonon modes in the THz range. These results confirm the multiferroic nature of this langasite and open new routes to understand the origin of the polar state

    Bi-layer Kinetic Inductance Detectors for space observations between 80-120 GHz

    Full text link
    We have developed Lumped Element Kinetic Inductance Detectors (LEKID) sensitive in the frequency band from 80 to 120~GHz. In this work, we take advantage of the so-called proximity effect to reduce the superconducting gap of Aluminium, otherwise strongly suppressing the LEKID response for frequencies smaller than 100~GHz. We have designed, produced and optically tested various fully multiplexed arrays based on multi-layers combinations of Aluminium (Al) and Titanium (Ti). Their sensitivities have been measured using a dedicated closed-circle 100 mK dilution cryostat and a sky simulator allowing to reproduce realistic observation conditions. The spectral response has been characterised with a Martin-Puplett interferometer up to THz frequencies, and with a resolution of 3~GHz. We demonstrate that Ti-Al LEKID can reach an optical sensitivity of about 1.41.4 10−1710^{-17}~W/Hz0.5W/Hz^{0.5} (best pixel), or 2.22.2 10−1710^{-17}~W/Hz0.5W/Hz^{0.5} when averaged over the whole array. The optical background was set to roughly 0.4~pW per pixel, typical for future space observatories in this particular band. The performance is close to a sensitivity of twice the CMB photon noise limit at 100~GHz which drove the design of the Planck HFI instrument. This figure remains the baseline for the next generation of millimetre-wave space satellites.Comment: 7 pages, 9 figures, submitted to A&

    Subgap Kinetic Inductance Detector Sensitive to 85-GHz Radiation

    Get PDF
    We have fabricated an array of subgap kinetic inductance detectors (SKIDs) made of granular aluminum (Tc_{c}∼2 K) sensitive in the 80–90 GHz frequency band and operating at 300 mK. We measure a noise equivalent power of 1.3×10Zahl^{Zahl}-16W/HzZahl^{Zahl}0.5 on average and 2.6×10−17^{-17}W/Hz0.5^{0.5} at best, for an illuminating power of 50 fW per pixel. Even though the circuit design of SKIDs is identical to that of the kinetic inductance detectors, the SKIDs operating principle is based on their sensitivity to subgap excitations. This detection scheme is advantageous because it avoids having to lower the operating temperature proportionally to the lowest detectable frequency. The SKIDs presented here are intrinsically selecting the 80–90 GHz frequency band, well below the superconducting spectral gap of the film, at approximately 180 GHz

    LEKID sensitivity for space applications between 80 and 600 GHz

    Full text link
    We report the design, fabrication and testing of Lumped Element Kinetic Inductance Detectors (LEKID) showing performance in line with the requirements of the next generation space telescopes operating in the spectral range from 80 to 600 GHz. This range is of particular interest for Cosmic Microwave Background (CMB) studies. For this purpose we have designed and fabricated 100-pixel arrays covering five distinct bands. These wafers have been measured via multiplexing, where a full array is read out using a single pair of lines. We adopted a custom cold black-body installed in front of the detectors and regulated at temperatures between 1 K and 20 K. We will describe in the present paper the main design considerations, the fabrication processes, the testing and the data analysis

    Anisotropy of the Sommerfeld Coefficient in Magnesium Diboride Single Crystals

    Get PDF
    International audienceThe anisotropic field dependence of the Sommerfeld coefficient has been measured down to B ! 0 by combining specific heat and Hall probe magnetization measurements in MgB2 single crystals. We find that B; is the sum of two contributions arising from the and band, respectively. We show that B; B=Bc2 where Bc2 Bab c2= si n 2 2cos2 p with 5:4 ( being the angle between the applied field and the c axis) and B; B B=B B . The ''critical field'' of the band B is fully isotropic but field dependent increasing from 0:25 T for B 0:1 T up to 3 T Bcc 2 for B ! 3 T. Because of the coupling of the two bands, superconductivity survives in the band up to 3 T but is totally destroyed above for any orientation of the field

    Circuit Quantum Electrodynamics of Granular Aluminum Resonators

    Get PDF
    The introduction of crystalline defects or dopants can give rise to so-called "dirty superconductors", characterized by reduced coherence length and quasiparticle mean free path. In particular, granular superconductors such as Granular Aluminum (GrAl), consisting of remarkably uniform grains connected by Josephson contacts have attracted interest since the sixties thanks to their rich phase diagram and practical advantages, like increased critical temperature, critical field, and kinetic inductance. Here we report the measurement and modeling of circuit quantum electrodynamics properties of GrAl microwave resonators in a wide frequency range, up to the spectral superconducting gap. Interestingly, we observe self-Kerr coefficients ranging from 10−210^{-2} Hz to 10510^5 Hz, within an order of magnitude from analytic calculations based on GrAl microstructure. This amenable nonlinearity, combined with the relatively high quality factors in the 10510^5 range, open new avenues for applications in quantum information processing and kinetic inductance detectors.Comment: 7 pages, 4 figures, supplementary informatio

    Superconductor-ferromagnet hybrids for non-reciprocal electronics and detectors

    Get PDF
    We review the use of hybrid thin films of superconductors and ferromagnets for creating non-reciprocal electronic components and self-biased detectors of electromagnetic radiation. We start by introducing the theory behind these effects, as well as different possible materials that can be used in the fabrication of these components. We proceed by discussing in detail the fabrication and characterization of Al/EuS/Cu and EuS/Al/Co based detectors, along with their noise analysis. We also indicate some routes for multiplexing such self-biased detectors.Comment: 28 pages, 21 figure
    • …
    corecore