34,313 research outputs found
Measurement of electric fields in the ionosphere Final report, Aug. 1966 - Sep. 1969
Measurement of electric fields in environmen
Different steady states for spin currents in noncollinear multilayers
We find there are at least two different steady states for transport across
noncollinear magnetic multilayers. In the conventional one there is a
discontinuity in the spin current across the interfaces which has been
identified as the source of current induced magnetic reversal; in the one
advocated herein the spin torque arises from the spin accumulation transverse
to the magnetization of a magnetic layer. These two states have quite different
attributes which should be discerned by current experiments.Comment: 8 pages, no figure. Accepted for publication in Journal of Physics:
Condensed Matte
The Fractal Dimension of SAT Formulas
Modern SAT solvers have experienced a remarkable progress on solving
industrial instances. Most of the techniques have been developed after an
intensive experimental testing process. Recently, there have been some attempts
to analyze the structure of these formulas in terms of complex networks, with
the long-term aim of explaining the success of these SAT solving techniques,
and possibly improving them.
We study the fractal dimension of SAT formulas, and show that most industrial
families of formulas are self-similar, with a small fractal dimension. We also
show that this dimension is not affected by the addition of learnt clauses. We
explore how the dimension of a formula, together with other graph properties
can be used to characterize SAT instances. Finally, we give empirical evidence
that these graph properties can be used in state-of-the-art portfolios.Comment: 20 pages, 11 Postscript figure
Lateral diffusive spin transport in layered structures
A one dimensional theory of lateral spin-polarized transport is derived from
the two dimensional flow in the vertical cross section of a stack of
ferromagnetic and paramagnetic layers. This takes into account the influence of
the lead on the lateral current underneath, in contrast to the conventional 1D
modeling by the collinear configuration of lead/channel/lead. Our theory is
convenient and appropriate for the current in plane configuration of an
all-metallic spintronics structure as well as for the planar structure of a
semiconductor with ferromagnetic contacts. For both systems we predict the
optimal contact width for maximal magnetoresistance and propose an electrical
measurement of the spin diffusion length for a wide range of materials.Comment: 4 pages, 3 figure
Galilean Limit of Equilibrium Relativistic Mass Distribution
The low-temperature form of the equilibrium relativistic mass distribution is
subject to the Galilean limit by taking In this limit
the relativistic Maxwell-Boltzmann distribution passes to the usual
nonrelativistic form and the Dulong-Petit law is recovered.Comment: TAUP-2081-9
Electronic inhomogeneity at magnetic domain walls in strongly-correlated systems
We show that nano-scale variations of the order parameter in
strongly-correlated systems can induce local spatial regions such as domain
walls that exhibit electronic properties representative of a different, but
nearby, part of the phase diagram. This is done by means of a Landau-Ginzburg
analysis of a metallic ferromagnetic system near an antiferromagnetic phase
boundary. The strong spin gradients at a wall between domains of different spin
orientation drive the formation of a new type of domain wall, where the central
core is an insulating antiferromagnet, and connects two metallic ferromagnetic
domains. We calculate the charge transport properties of this wall, and find
that its resistance is large enough to account for recent experimental results
in colossal magnetoresistance materials. The technological implications of this
finding for switchable magnetic media are discussed.Comment: Version submitted to Physical Review Letters, except for minor
revisions to reference
An experimental and computational investigation of the flow field about a transonic airfoil in supercritical flow with turbulent boundary-layer separation
A combined experimental and computational research program is described for testing and guiding turbulence modeling within regions of separation induced by shock waves incident in turbulent boundary layers. Specifically, studies are made of the separated flow the rear portion of an 18%-thick circular-arc airfoil at zero angle of attack in high Reynolds number supercritical flow. The measurements include distributions of surface static pressure and local skin friction. The instruments employed include highfrequency response pressure cells and a large array of surface hot-wire skin-friction gages. Computations at the experimental flow conditions are made using time-dependent solutions of ensemble-averaged Navier-Stokes equations, plus additional equations for the turbulence modeling
Low temperature irreversibility induced by thermal cycles on two prototypical phase separated manganites
We have studied the effect of irreversibility induced by repeated thermal
cycles on the electric transport and magnetization of polycrystalline samples
of La0.5Ca0.5MnO3 and La0.325Pr0.3Ca0.375MnO3. An increase of the resistivity
and a decrease of the magnetization at different temperature ranges after
cycling is obtained in the temperature range between 300 K and 30 K. Both
compounds are known to exhibit intrinsic submicrometric coexistence of phases
and undergo a sequence of phase transitions related to structural changes.
Changes induced by thermal cycling can be partially inhibited by applying
magnetic field and hydrostatic pressure.
Our results suggest that the growth and coexistence of phases with different
structures gives rise to microstructural tracks and strain accommodation,
producing the observed irreversibility. Irrespective of the actual ground state
of each compound, the effect of thermal cycling is towards an increase of the
amount of the insulating phase in both compounds.Comment: to appear in Journal of Alloys and Compounds (2003
Head-on collisions of boson stars
We study head-on collisions of boson stars in three dimensions. We consider
evolutions of two boson stars which may differ in their phase or have opposite
frequencies but are otherwise identical. Our studies show that these phase
differences result in different late time behavior and gravitational wave
output
Signaling local non-credibility in an automatic segmentation pipeline
The advancing technology for automatic segmentation of medical images should be accompanied by techniques to inform the user of the local credibility of results. To the extent that this technology produces clinically acceptable segmentations for a significant fraction of cases, there is a risk that the clinician will assume every result is acceptable. In the less frequent case where segmentation fails, we are concerned that unless the user is alerted by the computer, she would still put the result to clinical use. By alerting the user to the location of a likely segmentation failure, we allow her to apply limited validation and editing resources where they are most needed. We propose an automated method to signal suspected non-credible regions of the segmentation, triggered by statistical outliers of the local image match function. We apply this test to m-rep segmentations of the bladder and prostate in CT images using a local image match computed by PCA on regional intensity quantile functions. We validate these results by correlating the non-credible regions with regions that have surface distance greater than 5.5mm to a reference segmentation for the bladder. A 6mm surface distance was used to validate the prostate results. Varying the outlier threshold level produced a receiver operating characteristic with area under the curve of 0.89 for the bladder and 0.92 for the prostate. Based on this preliminary result, our method has been able to predict local segmentation failures and shows potential for validation in an automatic segmentation pipeline
- …