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FOREWORD

This report describes the continuation of the development of an experimental
laboratory model of an electric field meter using the electron beam deflection
technique and the development of a glow discharge test chamber within which
laboratory testing of this meter in an ionized environment was accomplished.

This effort was supported by the Space Science Laboratory of George C.
Marshall Space Flight Center under the technical management of Mr. E. L. Shriver.

The facilities of the Republic Aviation Division of Fairchild Hiller
Corporation, Power Conversion Department which is under the direction of
Mr. A. E. Kunen, were made available for this work.

The project investigator was Mr. G. Levy. The principal physicist was
Dr. L. Zadoff and the experimental physicist was Mr. M. Begun. Major
cc gtri'autions to this program were made by Mr. A. Urban, project designer,
Mr. H. Jacobs, instrumentation engineer, and Mr. J. Porte, performing the
analog computer analysis. The cooperation and support of the laboratory staff
under the direction of Mr. L. Brown is gratefully acknowledged.

This work was performed as a continuation of National Aeronautics and
Space Administration contract NAS 8-20663. The final report under the preceding
phase is NASA CR-61189 dated January, 1968. This final report is
Fairchild Hiller Corporation Report No. PCD-TR-69-6, FHR 3287-3,
PC090R0003, dated September, 1969.
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ABSTRACT

This report describes the continuation of the development of an experi-

mental laboratory model of an electric field meter using the electron beam

deflection technique and the development of a glow discharge test chamber within

which laboratory testing of this meter in an ionized environment was accomplished.
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SECTION I

INTRODUCTION

When one considers measuring electric fields that exist within the Earth's
ionosphere, imn-e diately one is faced with a myriad of problems. These
problems range from the fact that an apparent electric field (v x B) of a maximum
of 300 millivolts/meter is measured reflecting the velocity of the vehicle on
which the meter is being transported across the Earth's magnetic field; to the
plasma properties of the ionosphere in which the electric field to be measured
exists.

Experiments have been flown which demonstrated that an ambient electric
field does indeed exist, however, a more tractable method for ne asuring electric
field strength within the ionosphere is needed.

In addition to the ambient electric field within the ionosphere, and the
apparent electric field due to the relative motion of the meter with respect to
the ionosphere; electric fields exist due to charge separation caused by the motion
of the spacecraft through the ionospheric plasma. These plasma sheath fields are
extremely strong near the body (in the order of 500 volts/meter at 700 km altitude),
and vary significantly depending upon position about the body. Both the ambient
and induced electric fields have import in the understanding of the magnetosphere
and in the design and operation of spacecraft operating within the ionosphere.

Therefore, it is desirable to develop an electric field meter capable of
measuring precisely the relatively weak ambient electric fields (which have been
measured to vary from 2 rillivolt/meter to 85 millivolt/meter) in the presence
of the apparent (v x B) electric field while having the dynamic range to measure
the extremely strong fields due to plasma sheaths. The measurement of these
electric fields will require sophisticated instrumentaticM: and experimental
techniques. The meter used must not modify the electric field being measured.
This means that there should be no modification of the environment by the meter,
while at the same time the electric field must influence the field sensing portion

i
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of the meter. The meter must also be immune to the effects of extraneous

noise produced by such agencies as charge particle bombardment, secondary
emission by electromagnetic radiation, RF excitation, and cosmic radiation.
The environment must also be considered. It must be free of artificially created
electric fields. This means that electric field producing experiments and
functional spacecraft devices must be properly shielded.

The variety of methods to measure the electric field within the ionosphere
that have been used include: electrostatic probes, field mill, and charged
particle deflection. Experiments using the probe type of meter were reported
by Gdalevich and Imyanitovl , and Muzer and Bruston2 . An excellent analysis
of the design and limitations of electrostatic probe measurement within the iono-
sphere is given by Fahleson3 . The field mill meter within the ionosphere is
limited by the plasma sheath currents. Lafferty 4 discussed the results of an
induced charge experiment flown on Gemini N and V missions. Wildman 5 has

reported a field mill design which may improve electric field measurements
within the ionosphere for this type of instrumentation.

Perhaps the most interesting measurements of ambient electric fields
within the ionosphere were reported by Haserb . In this experiment clouds of
barium and strontium vapors were released in the ionosphere. The barium is
rapidly ionized by the sun and tends to diffuse along the magnetic field lines
forming long narrow streamers. The strontium is not ionized and it retains
a globular shape. The rate of separation of these two clouds provides a
measurement of the electric field strength. The dynamical model of the inter-
action of electric and magnetic fields within the ionized cloud and the charged
particles is still being studied.

The concept of measuring the deflection of a beam of charged particles
when introduced into an electric field is not new, R.W. Warren, "Measurement
of Electric Fields as Applied to Glow Discharges, " Rev. Sci. Inst. , August,
1955 7 discussed its use. However, the technique has not been vd dely used for
this purpose. For this reason in 1964 the Research Projects Laboratory of
the George C. Marshall Space Flight Center, Huntsville, Alabama, began an
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investigation to determine if this technique might be used to measure electric field
strengths encountered in space exploration. The results of this effort, using a
sensitive but rather uncomplicated meter, showed that fields of 1 volt per meter
could be easily measured in the laboratory. Indeed it was apparent that a program
of development and optimization would yield a much more sensitive instrument which
should have application in the space exploration program. This wo rk was reported
in NASA TMX 53435, "Investigation of the Deflection of an Electron Beam as a
Means of Measuring Electric Field Strength, 11 April 12, 1966 by E. L. Shriver8.
In August, 1966, a contract was established by the NASA/MSFC with Fairchild
Hiller Corporation, Republic Aviation Division, for the development of a field meter
of this type. These efforts have produced an experimental model electric field
meter using the deflection of an electron beam as a means of measuring electric
field strength. The spacecraft field meter systems concept necessary for the
operation of this meter in the ionosphere have also been investigaed. The field
meter which has been developed uses a low current electron beam (less than one
microampere) to provide a field sensing element which does not disturb the
environment or the field being measured. It may be used to measure electric fiells
at desired locations relative to the spacecraft both near and far from the space-
craft surface 9.

The next task performed in the development of this instrument was to test the
instrument in an ionized environment. The complete simulation of the ionosphere
in the laboratory is a formidable problem beyond the scope of our development. A
glow discharge has been generated which provides, in its positive column, an
electric field existing within the ionized gas. Some aspects of the operation of
the field meter in the ionosphere have been simulated closely enough to provide
meaningful test results.

Section II of this report presents results of electrical Faraday cage analysis
and simulations for both electrostatic and electrodynamic cases with linear current and
voltage relationships. The preliminary design of a mechanical cage is also
presented. The performance of the electron beam and deflection loops as a
function of pressures are presented in Section M. The description of the glow

3



discharge chamber, the double Langmuir probe, and the measurements of the
plasma and electric field parameters as a function of pressure and discharge
conditions are presented in Secti ,)n IV. Included in the Appendices is an analysis
of the electron beam-neutral gas interactions with and without an electric field.
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SECTION II

FARADAY CAGE DESIGN

A. INTRODUCTION
One of the unique concepts in the design of the electron beam electric field meter

is the chopping of the electric field. This chopping technique permits the discrimina-
tion between the deflection of electrons caused by the motion through the earth's mag-
netic field and that caused by an electric field. The Fara(:ay cage is a device which
shields electric fields from penetrating into the region in which the electron beam
exists.

Since it would be advantageous if a cage could be designed to open and close with-
out mechanical devices, the possibilities of utilizing the ionospheric properties to open
and close the cage electrically were explored.

In concept, the electrical Faraday cage consists of an array of wires so arranged
about the electron beam thz ^ when these wires are electrically isolated from each
other, the electric field penetrates undistorted to the electron beam. Then, when
these wires are electrically shorted to each other, the electric field is shielded from
the electron beam.

This section relates the analysis, analog simulation and design of thc. Faraday
cage.

B. ANALYSIS OF ELECTRIC FIELD DISTORTION BY A CIRCULAR ARRAY OF
LONG METAL WIRES
A number of long cylindrical :netal wires are arranged around the circumference

of a circle whose plane is perpendicular to the wires. There is a uniform external
electric field whose direction is also rcrpendicular to the wires. It is desired to find
the distortion of the external field caused by the presence of the wires at the center of
the circular array.

If we consider only one cylindrical wire in a uniform external field, the potential
external to the wire, is given by:

1)

_ —Er coscp + EC r j coscp

where r and cp are the polar coordina tes whore origin is at the center of the circular
crosf:-section of the wire, and the field of magnitude E is in the x direction. The radius

1
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iif t;ic ,\ ire is a. 1 he first term on the right is the unillorin field, while the second	 i

terni is the ;ii Wrtion -tu,,- to the presence of the wire. The appearance of this term is 	 --
2

that of ,.he ix)tent1nI of a dipole. This dipole is induced b- the redistribution of charge

shout the peri t._ -2rti of the metallic cylinder to exclude the field from its interior. It

may be noted that for a fixed r, the distortion is proportional to a2.

We sh,01 first treat the circular array of wires by making the approximation that

the ratio of wire radius to spacing is sufficiently small that eiectric field produced by 	 iI
each wire is unaffected by the presence of the other wires. Consequently, the field

distoi p ion at the center of the arra y is obtained by superposition of the field produced

by the presence of the individual wires. Then we shall examine the er:o resulting

from neglect of the interaction, between -ires. This interaction occurs from the redis- 	 +

tribution of charges on each wire, not only due to the presence of the external uniform 	 I

field, but also as a result of the fields of the other wires.	 It

In cartesian coordinates the potential for a single wire is;

a2^ = Ex^-1 + 2 2/	 ^	x 	 y-

and the field is:

2 2	 2	 2
E= a E

	

F. - a(x	
_

-y 1	 2a xy	 T
-x L	 (x2 +y 2 1 2- - Ey (x2 + v212	

3	 _

where ax and ay are unit vectors in the x and y directions respectively. It, may be noted

that if we subtract ax E from Equation (3) the remainder is the distortion produced by

the wire.

Let us now calculate the distortion produced at the center of the array, usin_ the

superposition approximation-

N x.2_ y. 2 	N	 2x.y.
E= ax Ea 2	 -J _n 2 2 + a V Ea 2 	 2 J-1 2	 4

j-1 (xj + yj )	 j=1	 (x j + y j)

The total number of wires is N and xj , ; j are the x and y coordinates of the center of

the array for an origin of the j th wire. Let R be the radius of the circular array and let
a be the angle made with the electric; field direction by a line joining the center of the

1
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wire nearest the positive x axis. It is convenient to label this wire number 1 and

count the remainder in a counterclockwise fashion. Then,

xj = R cos j N + a i

5
y. = Rsin ^j 21r +a

J

and Equation (4) becomes:

2 N2 N
E=axE11— E cos(I N +2a)+a E,R\ L sin, 47T +2a1. 6
- -	

j=1	 j=1

But,

N	 N	 N
L cos C j N + 2 a J = cos 2 a L cos ( j N - sin 2 a L sin C j N j 7

j=1	 J 

1	
1

and,

N	 ^ 47r	 N	 / . 47r	
N

	 /,'.  47r 1L sin j N +2a ^, = sin 2 a L cos ,\J N + cos 2 a L sin t,J N ^; • 	 g
j=1	 j=1	 j=1

An interesting special case arises when the number of wires is divisible by four.

Then we may let N = 4n where N is an integer. The summation then takes on the value:

L cos (j N J = L cos n
j=1	 j=1

	
2n	 3n

	= L cos ^j n^ + L cos \ j n + E	 cos ^j n \
j=1 	 j--n+1	 j=2n+1

	4n 	 /

	

+ L	 cos l j n

j=3n+1

Now consider:

L	
^rjE	 Jcos ^^ n

j=n+1
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+ R

ff

L,et j -- k , n. Then,

2n	 n
E	 cos j	 _ E	 k + n) 17 = L	 ktrcos	 cos 	 + IT

_ n,	 n	 n /
j= n+1	 k-=1	 k=1

n	 ^- kir
_ — E cos

k=1	
, n

Similarly,

3n	 n

L	 = L cos lrrr
j. 2n+1	 k=1	 I n

and,

L cos ^^ _ — L cos
j=3n+1	

n	
k=1

Finally, then, for N = 4n

N
L cos ^j 41T '^ = 0
j=1

Similarly, for N = 4n

N
L sin (^j 41T
	 =0

j=1

Hence within the limitations of the superposition approximation, the field distortion at
the center of the array for a number divisible by four is zero. Since this result occurs
because of cancellation of fields when the wires are regularly spaced, any departure
from regularity will result in some field distortion. Completely random orientation of
the wires would lead to field components of the order of I'N E (a/R)2.

We next evaluate the accuracy of the superposition approximation. We do this by
considering the next order approximation. Let us focus attention on one wire and con-
sider the fields produced by the other wires at the location of the wire under scrutiny.
We again use the superposition approximation to do this. Next, since the wire radius



is assumed small compared to the spacing, we shall assume that the effect of this
superposition will be a field which is uniform over the dimensions of the wire. We
add this field to the original external field were present. The distortion of the x
component of the field would then be calculated from Equation (3) with E + E c substi-
tutcd for E where E c is the correction to the original field. Now E. is evidently of
the order of E (a/p) 2 where p is the spacing between wires.

Thus the error introduced by the neglect of the interaction is of the order of
E a4 /,p 2 112 . For a typical cage of R = 4 inches, p = 0.5 inches and a = 0.005 inches,
the error is 10- 12 of the ambient electric field E.

Further, this analysis can be applied to electric fields which are not perpendicu-
lar to the wires; if only the electric field components which are perpendicular are
considered. Thus for any electric field orientation the circular array consisting of a
multiple of 4 wires, will have a most probable distortion at the center of the array of

E (a/R)2 if the location of each wire is randomly placed about the periphery of the
circle. For N = 88 and the same a and R as above, the distortion is 10 -5 of the
ambient field E.

C. SHIELDING BY A CIRCULAR ARRAY OF CONDUCTING WIRES IN A UNIFORM
EXTERNAL FIELD
We consider here an array of infinitely long parallel conducting wires placed uni-

formly about the circumference of a circle which lies in a plane perpendicular to the
wires. The array of wires is placed in a uniform electric field whose direction is
perpendicular to the wires. It i,3 desired to find the electric field in the center of the
array when the wires are electrically connected so that all the wires are at the same
potential. We will consider the special case of the number of wires N to be divisible
by four and so oriented that the wires may be selected in pairs lying on a line parallel
to the electric field direction.

We will let the wire radius be a and the radius of the circular array be R. The
external electric field is to be oriented in the positive x direction.

y
j=N/2

•• •	 y

•
-- ---►^	 x

E	 j=N/4

'	 =1

1=0

9



The magnitude of the external field is E. Finally we provide each wire with an

index k, letting k = 0 at x = 0, y = —R and counting counter-clockwise. The wire at
x = R, y = 0 is then N/4 and the one at x = 0, y = R is N/2. The units used in the
treatment will be e.s.u., although the final results will be obtained in terms of dimen-

sionless ratios.

When the unconnected wires are placed in the external field, the charges redistri-
bute themselves about the wire, so that a dipole moment per unit length is acquired
although the net charge per wire remains zero. However, when the wires are con-
nected together, the individual wires acquire charges, although the total charge of the
system of charges is zero. For a field oriented as shown, the wires j = (N/2) + 1 to
j = N — 1 acquire a negative charge; the wires j = 1 to (N/2)-1 acquire a positive charge;
while wires j = 0 and j = N/2 have no charge. This results from the fact that when
shorted together with the wires acquire charges which tend to cancel the field at the
center of the array. (The external field pushes the positive charges from the left side
of the array to the right side).

The potential V at any point is then

N/2	 (x + xj )2 + (y —Y.)2
V = —Ex + E X. In	 2	 2j=0	 J	 (x — xj ) + (Y — Y j )

where (xj , yj ) are the coordinates of the j th wire. The X j Is are the magnitude of the

charge per unit length of the j th wire. When x = xk , V = 0

N12	 (xlc 
+X )2 + (Yk Y )2	 / 2xk \ 2

0= —Exk + E% in	 1 2	 3 2 + ^k In a J

^^ j (
xk — xj ) + (Yk — Yj)

.he wire locations are

x. =Rsinj N
J

yj =—R cos j 
N

The last term at the right of Equation (10)appears since the expression in Equation (9)
is valid only outside the wires, the potential being constant inside the wires. Also,
the wires are assumed sufficiently small so that the potential is the same as if the

9
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charges were concentrated at the center of the wires. By malting substitution of

Equation(11) into Equation(10), we obtain, after some ma-aipulation,

Exk N/2	 sin (j+k) N	 2xk
0 = 2 + E X. In	 Tr + Xk In r a ij=0	 J	 Isin(j–k) N

j^k

Equation( 12 ) constitutes the N/2 linear algebraic equations for the unknowns a k.
This can in principle be solved since the coefficients are known. However, an excel-
lent approximation, for the number of wires N being IL rge, can be obtained by making
the assumption that the value of the charge per unit length is given by

N/4sin2N

The conditions under which this assumption is valid is discussed in the appendix.
Then after making the substitution in Equation(12) and taking k = N/4, we obtain

–ER	 N/2	 21rj	 sin(j + N ) '	

C—)

	

2R
0+ 

N/4 E sin — In	 N Tr + N/4 In  a2	 j=0	 N	 ^sin(j-4 ) N 1j^N/4

Solving for .X N/4 , we get
ER

N/4	 N/2	 21rjsin(j + 4) N	 2R
2 E sin — In	 + In C a /)j=0	 N	 Isin(j– N)

. ^N/4	 4 N

Provided that the assumption of Equation(13) is correct we then have the values of all
the Xj.

If we know the values of the X j , the calculation of the net electric field at the
center of the array is straightforward. From Equation (9)

2)VV	 N/2	 X. F(x^ –x 2) 
+ (y–y.)2j

E x = 	 E– E 4X . r—^--	 2	 2	 2ax	 j=0	 J L (x–xj) + (y–Yj ) L(x+xi ) + (Y–Yj) J

13
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at the center (0, 0)

N/2	 1	 16Ex = E — L 4X .x. 2	 2
j=0	 J J xj + y 

But

n 2xj + yj " = R	
17

4N N/4 N/2	 2 2jV
Ex = E — R	 L sin N	

lb
j=0

The summation in Equation(14), EN14, can be approximated by integrals, in

terms of which

3V/4	 r, /4

L N/4	 — r cos 2s In sds — r cos 2s In sin sds
R/4	 'R/N

r
IT^2 +sin 21Y (In sin N -2i+N^	 19

If we neglect terms of 0(11N) compared to terms of 0(1), then,

N
L N/4 2	 20

This result is a special case of the more general summation treated in Appendix H.

Substitution in Equation (14) yields

__	 ER

N/4 N + 2 In l ` 2a j	 21

Then Equation (18) becomes

N/2
4 E sin 2j17

Ex =E 1 — •=0	 2R N	
22

N+21n a

12



I ^,

Again using an integral to approximate the summation in Equation (22)

N/2	 2 2 ff N
L sin N
	 4

j=0

Finally

^,	 1 iE x E	
_1+N In 2a

Thus the term

S=
1

1+ N ln\2a

can be used as a figure of merit to represent the effectiveness of shielding at the center
of the array. We note that as N gets large S approaches 100%. It may be noted that the
chosen orientation of the array relative to the field is not significant since the field may
be resolved into two components each of which has the orientation chosen in the analysis.

D. INTERMITTENT FARADAY CAGE ANALOG SIMULATION
We are pursuing two approaches to provide the chopping of the electric field.

Within the F region of the ionosphere we are designing an electrically intermittent
Faraday cage; while in the other regions of space mechanical operation is required.
The possibility of an electrically operated Faraday cage is extremely tantalizing, since
it eliminates the requirement for moving parts. The concept is an arrangement of con-
ductors symmetrically located around the electron beam. When these conductors are
floating at least 99% of the ambient field is present within the Faraday cage to deflect
the beam, and when the conductors are shorted together at least 99% of the ambient
field is shielded from the beam.

The problems involved in this development are:

1. When the cage is open the ambient electric field must not be distorted by
the presence of the floating conductors.

2. When the cage is closed, the ambient field must be adequately shielded
out.

3. When the cage is re-opened on the cyclical basis, the charges on the
conductors must redistribute through the ionospheric plasma suffiently
fast so that the ambient field is re-established at the electron beam
location in a `_ime much shorter than the chopping frequency.

13
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To design a Faraday cage Lo meet the open and short requirements, two dimensional

analog simulation of a variety of conductor configurations were run. The EAI analog

computer model number 231E and variplotters model number 1100E were used to follow

specific potential lines. Resistance paper of 8000 ohms per square was used to estab-

lish the field between electrodes painted on the paper with silver conducting paint.

The potential line:, in the center of the paper were plotted and used as the reference

field. Then the conductors were painted on in accordance with the two dimensional end

view of the cage being studied. The potential lines in the center were again plotted.

Comparison of the potential lines before and after the end view conductors were painted

on the papers provided data on the amount of distortion created by the presence of the

conductors. Then the conductors were shorted together by shielded wirer out of the

plane of the paper. The center potential lines were again plotted. A comparison of the

potential lines before the conductors were painted on and those after the conductors

were shorted together by shielded wires out of the plane of the paper. The cente' • po-

tential lines were again plotted. A comparison of the potential lines before the conduc-

tors were painted on and those after the conductors were shorted indicates the -mount

of shielding that the cage provides. Table I indicates the results of a number of config-

urations. Figure 1 shows the analog computer, the model on the variplc"-- ^nd some

potential lines which were plotted, while Figure 2 is a close-up of the variplott'_^r and

the simulated cage.

E. THREE DIMENSIONAL TESTS OF FARADAY CAGE AT S.T.P.

The assembled Faraday cage was placed between two 4 ft. x 4 ft. aluminum sheets.

A potential was applied between the sheets creating an electric field at the Faraday

cage. A two wire probe was placed at the center of the cage to measure the electric

field.

The field was produced by applying simusoidal voltages across the aluminum sheet,

the outputs of the wire probes were applied to a differential amplifier and displayed on

an oscilloscope along with the applied voltage for synchronization and comparison.

Comparison of the developed voltage across the probe when it was placed within an

open (wires electrically isolated) cage and on the probe with the cage removed showed

approximately the same field. This indicated that the presence of the cage negligibly

distorted the electric field in its center.

14
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Next aluminum foil was wrapped around the cage and grounded to one side of the

sinusoidal voltage generator. The electric field at the probe dropped almost to zero. 	 4r
Leakage through the top and bottom of the cage resulted in a small residue of field. 	 !:

Then all the wires of the cage re electrically shorted by a conducting wire.

Again the field at the probe reduced to the leakage field level. This demonstrated that

the arrangement of wires provided as good a Faraday cage as an aluminum sheet wrapped

around the cage.

F. SWITCHING OF THE FARADAY CAGE

After determining the arrangement of wires necessary to provide adequate
field cropping action, it was necessary to decide upon the method of switching the
cage from an open to a closed position at rates as high as 1000 Hertz.

The final design o! the cage uses 96 wires; these wires must be alternately
shorted and opened. The technique caosen to switch the cage mode uses the plasma
of the ionosphere as part of tLe switching circuit.

Each wire is terminated with an IN4148 diode; the wires are alternately	 V
connected to the baba and collector of the diodes. Thus a series path from the
swi^c:h actuator (f5 volt square wave generator) through 48 diodes in parallel
connected to alternate wires, through the plasma between the wires, then through
the next 48 diodes again in parallel and back to the square wave generator.

The technique was to test two dimensionally, again using resistance paper
and silver paint. A field probe in the center of the cage configuration measured
the electric field when the cage was opened and closed. Figure 3 shows the
arrangement. The diodes were switched at 400 and 4000 Hertz and for square «gave
voltages between t 2 to f 5 volts. The same amount of shielding and penetration of
the electric field was obtained as when the wires were physically opened and
shorted.

18
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a) Experimental Set-Up

Electrode

b) Schematic

Figure 3a & b. Diode Switching Configuration (Analog)
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G. DESIGN OF FARADAY CAGE

Based upon the analysis and the anlog computer results, a system of thin
wires arranged concentrically around the beam was chosen. The analysis
demonstrated that for adequate reduction of distortion, the wires should be
arranged symmetrical and in groups of fours. Further, for adequate field
cancellation the number of wires should be large. The measure of largeness and
the influence of wire geometry and positioning were explored experimentally using
the analog computer. The result of this investigation resulted in an arrangement
of wires in two concentric circles about the electron beam. The total number of
wires is 96, where 48 wires are located on an eight inch diamter circle and the
rest on a nine inch diameter circle. The wires in each row are about one-half
inch apart and the rows are interlaced so that each wire on the inner circle is
midway between the wires of the outer circle. The diameter of the wire
originally chosen was 32 mils, however in fabrication it was found that 20 mil
wire was better. Since it was desirous to use as thin a wire as possible to reduce
the extent of the plasma sheath penetration into the Faraday cage, the thinner wire
was used. Theoretically, electric fields produced by the plasma sheath around
the wires should decay as a strong function of (R/^ j, where R is the ratio of

distance between the wire and the electron beam to the radius of the wire, and

X D is the Debye length of the ionosphere. Typically this electric field is
negligible 100 body radii from the wire. Figures 4a and b show the electric
field meter.

H. MECHANICAL CAGE

The , ,roblems associated with an electrical ::age operating within the
ionosphere are numerous, as this investigation has indicated. An obvious alternate
approach is a mechanical cage which closes and opens by mechanical means at
some set rate. The variation of the magnetic field strength is a function of
satellite position, makes it desirous to have as fast a chopping rate as possible.
However, the weight and size limitations of the field meter have led the preliminary
design considerations to limit the rate to below 10 cycles per second. One of the

20

I



-	 v

a) Electron Gun and Diode End

b) Target and Amplifier End

Figure 4. Electron Beam Electric Field Meter
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designs is illustrated in Figure 5. This design minimizes the amount of cage
remaining while the cage is open and the rate of chopping is twice the rotation
rate to minimize vibration noise of the readout signal. This cage is completely
closed twice during each rotation of the vanes, thus complete electric field
elimination, regardless of the plasma parameters, occurs.
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SECTION III

FIELD METER OPERATION

A brief description of the electric field meter design concept is presented
herein; more details are to be found in Reference 9.

There are two major difficulties in measuring ionospheric electric fields by
deflection of an electron beam. The first is that the ambient electric field
deflection is very small. The second is that the Earth's magnetic field introduces
a ver large deflection. For a 500 volt beam, a magnetic field of 1 gamma produces
as much deflection as an electric field of 14 millivolts/meter. Since the Earth's
field can be of the order of 40, 000 gamma, a signal to noise ratio of 1/560, 000
must be overcomo in order to resolve one millivolt/meter.

The means chosen to discriminate between the deflection due to magnetic
versus electric fields is to modulate the electric field in a precise manner, by
alternately creating and removing a Faraday shield around the beam. The ma,,-
netic field is unaffected by this, while the electric field is modulated in a square-
wave fashion. By demodulating the output signal synchronously with the modulation,
only the squarewave signal is accepted. In order to accurately measure deflections
without requiring an extremely accurate mosiac target or other such device, the
closed loop beam centering system is employed. A current collector target is
divided into four segments. The currents collected in two opposing segments are
balanced against each other. The difference signal when amplified and applied as
the voltage to an appropriate pair of deflection plates is then a direct measure of
the field induced beam deflection. The component of this voltage which is syn-
chronous with the clapper represents the electric field while the steady state
voltage represents the magnetic field. It should also be noted that there is
virtually no requirement on drift or D. C. offset of the amplifiers in the loop,
or on mechanical or thermal stability. Any misalignments in the gun target
arrangement will contribute to the D. C. deflection plate voltage and will not affect
the electric field reading.

25



Figure 6 is a functional block diagram of the meter showing some of the

parameters of the loop. The conversion constants from electric and magnetic
field to deflection are based on a 500 volt beam. A realistic design goal for the
accuracy of this meter should be f 1 my/m over a range of 100 my/m and f 1%

accuracy over a dynamic range of 100 my/m to 1000 volts/meter. The upper
limit is determined by the t 100 volts limitation of the readout equipment and
power supplies.

A. ELECTRON BEAM CHARACTERISTICS AS A FUNCTION OF PRESSURE

The electron beam utilized in the meter must traverse 0.27 meter
(10.5 inches). The attenuation of the electron beam due to collisions with gas
molecules was discussed in Reference 9. The spatial rate of change of beam
current along its path is given by:

dI = - w I
dz

f /Io = exp (- 4 p z)

where 1  is the initial beam current

I' is the beam current at the target.

The logarithmic decrement of beam current (µ ) for nitrogen at 600 volt
acceleration voltage is 1.24 x 10 7 cm2/gm. The gas density at 10 -3 Torr is
2 x 10 -1 gm/cc. Thus the percentage of beam reaching the target should be
about 50%, and reducing to less than 1% at 10 -2 Torr. The beam current was
monitored from -0 -5 Torr up to 10 -2 Torr. The actual current collected by the
target is shown in Table II.
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Table 11. Current Collected at Target vs. Pressure

Beam Current
Pressure	 at Target

	

(Torr)
	 (Microampere)

	

10-5
	

1.6

	

10-4
	

1.4

	

10-3
	

0.5

	

2 x 3.0-3
	

0.3

	

5 x 10-3
	

0.1

	

10-2
	

0.05

B. OPEN LOOP OPERATION

The electric field meter was placed within a bell jar for calibration,
nitrogen gas was allowed to enter through a controlled leak raising the pressure

from 10-5 to 1.5 x 10-2 Torr. As the pressure rose, signals to both the x and
y preamplifier and the output of the final amplifiers were monitored. The forward
gain of both A. C. and D. C. signal are shown in Table III.

Table III.	 Forward Gain as FunL::on of Pressure

Pressure (Torr) D. C. Gain A. C. Gain

X y x Y
10 -3 1000 100 540 100

5 x 10 -4 850 100 540 100

10 -3 750 75 500 100

2.5 x 10 -3 200 75 400 100

6.5 x 10-3 (raised  filament 600 280 600 400

1.5 x 10-2 (changed A3 1200 200 650 250gain setting)
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Since the closed loop system gain is K/(1+5 K); where K is the forward gain
and - is the feedback, when K is 100 or raore and ? is about 0. 1 or more, then
this can be approximated by 113 . We found that by adjustment of amplifier

{	 gain and filament power, the forward gain can be in the order of 100 or better for
both axis from 10 -5 to 1.5 x 10 -2 Torr pressure range.

C. CLOSED LOOP OPERATION

After assuring that sufficient forward gain was possible over a pressure
range from 10-5 to 10 -2 Torr, the loop was closed by applying a feedback
voltage on the deflection plates of the electron gun. Since when the loop is closed
all D. C. level shifts are removed, only the A. C. gain between the preamplifier

{ to the output was monitored. The A. C. gain as a function of pressure with a
stable closed loop operation is shown in Table IV.

f Table IV. Closed Loop Gain as Function of Pressure

Pressure (Torr)	 Closed Loop Forward Gain
x	 _Y

	

5 x 10-5	230	 350
	10-4	200	 280

	

10 -3	200	 280

	

5 x 10 -3	200	 200

	

10 -2	100	 100

iD. SCALE FACTOR CALIBRATION

Since the amount of beam current per millimeter of deflection charge and
the deflection per volt applied to the deflection plates are part of the closed loop,
the calibration of the meter is accomplished by establishing the loop electronic
parameters then observing the output voltage as a function of applied field.

For an applied field of 60 volts/meter, the outputs of the final amplifiers
(A 3 in both x and y) were 2.6 volts. Thus the scale factor at a pressure
of 5 x 10 -3 Torr was 46 millivolts per volt per meter. The scale factor was
checked at 120 volts/meter. These electxic field values were used in the
calibration because typical fields in the positive column of the glow discharge
are quite high.

29



E. CLOSED LOOP PERFORMANCE WITHIN THE IONIZED CHAMBER

The assembled electron beam electric field meter was placed within the
glow discharge chamber. The chamber was evacuated to 10 -6 Torr, then
nitrogen was introduced through a controlled leak to raise the chamber pressure
to the glow discharge ignition point. Glow discharge and closed loop operation
occurred from pressures slightly less than 10 -3 Torr up to 8 x 10 -3 Torr.
Above this pressure, the loops tended to oscillate, while below 10 -3 Torr the
glow could not be ignited.

At 5 x 10 -3 Torr in nitrogen, the loop parameters were established. Based
upon the bell jar calibration, the output of the loops were 46 millivolt per vole:/
meter. This output was filtered and the voltage read on an A. C. differential Fluke
voltmeter. The attenuation of signal due to filtering was 0.42. Thus for each
volt of measured output on the Fluke voltmeter, the field has a strength of
52 volts/meter.

The diodes were triggered by a squarewave generator at 1 kHz and 10 kHz;
the discharge voltage was varied from 1100 to 1660 volts and the discharge
current varied from 1 m amp to 6 milliampere. The average electric field
value on the X axis was about 52 volts/meter and on the Y axis 26 volts/meter,
at the higher discharge currents (3 m amp - 6 milliampere), there was close
agreement between the 1 kHz and 10kHz chopping rates. However, the results
of these measurements are questionable. The reasons for the doubts are discussed
in Section IV of this report, where the action of the cage as a function of pressures
using an electrostatic probe are discussed.

t
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SECTION IV

FARADAY CAGE OPERATION IN PLASMA ENVIRONMENT

A. PLASMA FACILTI'Y

A large glow discharge tube was constructed to test the electric field meter.
The diar_net-r of the discharge tube was dictated by the requirement that the mean
free path be larger than the meter, while smaller than the tube diameter. This
feature minimizes wall effects.

The tube is made of six sections of 2-foot diameter glass pipe. These
sections are mounted on carriages and ride on the rails of a main frame. This
allows for a mr%ximum electrode separation of 14 feet. The ends of the sections
have a flat ground face which seals against a teflon gasket.

The electrodes are aluminum discs whose diameter is slightly smaller than
the tube diameter. To eliminate some of the electrical noise from the discharge
pointed steel pins were inserted into the cathode to achieve brush cathode action.
It is known that cold cathode discharges that use a brush cathode are electrically
much quieter than the conventional cold cathode discharge.

The vacuum system for the tube consists of a roughing pump and a 4-inch
pumping station.

Ti.e lowest pressure that we can achieve under normal operating conditions
1	 is 10-6 Torr. The measured leak rate is less than 10 -3 Torr per hour.

The power supply for the tube 1.6 3, 500 volt, 2 ampere supply. The long
length of the tube allows us to stay on a part of the Paschen curve such that the
necessity for a starting circuit is eliminated. A variable resistor bank is used to
adjust the load line to the desired operating point. Figures 7 and 8 are photographs
of the apparatus.
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B. EXPERIMENTAL RESULTS

A double Langmuir probe was used to measure plasma density and electron
temperature. Measurements of these plasma parameters have been made in one

plane of the tube. Figures 9, 10, and 11 are measured probe characteristics.
Table V is a list of the reduced probe data. The density was determined by using
a si,nplified ion current saturation formula:

k T	 1/2

Ip = 2e Ap^0	 Me)
where:

I 
	 = ion saturation current	 T 	 = electron temperature

e	 = electronic charge	 M	 = mass of the ion

A 
	 = probe area	 110 = electron density

P electronT Te (0K)1o

cm

375 a 4 x 10 7 1.7	 x 104

100 a 5 x 107 .8	 x 104

50 4 x 10 7 2.2	 x 104

10µ 2x108 .55x104

5 4 1	 8x10 7 1.9	 x 10 4

Table V.

This equation overestimates the density because it ignores sheath effects which
increase the effective current collecting area of the probe. It will, however,
determine the eiectron de-sity correctly to an order of magnitude. The probe data
was analyzed by the two tangent method. Figure 12 is a schematic of the probe
measuring circuit.

The probes were driven by a variable voltage source which swings the probes
plus and minus. The source consisted of a series battery and a voltage divider.
The probe current was measu-ed with a Fluke isolation amplifier, model A88.
This amplifier has are impedance that is greater than 5 x 10 11 ohms between
inpu' tnd output. Fluke Digital Volt Meters were used to measure probe voltage

i
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Isolation	 Fluke
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Figure 12. Double Probe Measuring Circuit
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M.

and probe currents. The Fluke D. V. M's were isolated from the line voltage with
an isolation transformer. The isolation between the D. V. M's and the discharge

ground was greater than 10 9 ohms as measured by an insulation tester.

The electric field in the discharge is measured by turning the double probe

so that it was in line with the discharge. The probe i s driven to the zero current
condition. At this point the probes are floating. If we assume that both probes
have equal floating potentials then the external driving voltage measures the
electric field in the discharge. Table VI shows the electric field as a function of
discharge parameters. The electric field measurement was checked by running
the discharge at a pressure of 500 microns in nitrogen, The discharge was
operated as a normal glow discharge. The measured electric field was 3.25volts/
cm. This is in agreement with the literature for large values of pR^10)

Electric Field
/cm

Pressure
Microns

Tube Voltage
(Volts)

i Tube Current
Milliam s

5.19 450 1800 90

4.2 1 300 1700 90

3.91 200 1400 90

2.50 100 1850 55

1.20 50 800 20

.650 10 1250 20

.420 5 1700 20

Table VI.	 Table of Electric Field Values

Next, the Faraday cage was positioned over the Langmuir probe. The probe was
then in the center of the cage and directed along the cage axis, Figure 13. At a
pressure above 110 microns the cage was always closed. This was evidenced by
the probe response. The probe was driven more than 10 volts plus and minus. No
probe current was registered Indicating no plasma in the cage. The probe was then
oriented along the discharge tube axis, and driven to the zero current conditions.
Again, no field was observed. At pressures below 100 microns the cage was always
open. Thb3 was evidenced by good probe response. Figures 14, 15, 16.

s
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Figure 13. Probe Orientation in the FaradaA Cage
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XFigure 15. Probe Characteristics With Cage Over the Probe.
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Table VII is the reduced probe data with the cage open. These measurements
were made with the diodes both open and closed. Stated more directly, the diodes
had no effect. A different approach was then tried. An auxiliary electrode was
placed into the discharge tube, between the anode and the cage. This electrode was
made of metallic honeycomb. It was placed in a plane parallel to the electrodes.
Figure 17 is a schematic of the arrangement. In this arrangement the auxiliary
electrode is connected directly to one wire of the cage. At pressures from 200
microns down to 110 microns the cage remained closed unless the diodeo were
activated by an external 3 volt battery. When the diodes were Gctivated, this
connected all the cage wires together, and the cage was open. This was determined
by probe measurements along the discharge axis and perpendicular to the axis. The
Faraday cage could be opened and closed by activation of the diodes to 110 microns.

At this pressure the visible sheath structure around the cage clanged as if we had
switched the diodes on. Below 110 microns the cage always remained open. Figure
18 shows the electrical connections to the cage, and the auxiliary electrode.

Pressure electrons T 	 K
(Microns)

(
cm (electron temp)

100 2x107 .7x104

10 3x107
I

.4-x104

5 1	 108 1_.9 x 104

Table VII. Reduced Prone Data From Langmuir
Probes With Cage Over Probe
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C. DISCUSSION OF RESULTS

The analysis of Section II, employed in the design of the Faraday cage, was
apparently inadequate to predict operation in the plasma of the discharge tube.
The most immediate explanation for this behavior is the error introduced by the
linear relations between field and current involved in Laplace's equation. The
more complete approach is to couple the Boltzmann equation to Poisson's equation.
Immense complexities result from this approach even in simple probe theory, be-
coming intractable when collisions are included. When an array of probes (the
Faraday cage is composed of individual wires resembling probes)is then placed in
a plasma containing an external field, a complete analysis becomes a Herculean
task.

However, some understanding of the results may be attained from probe
theory. One characteristic is the saturation of the ion current to the probe.
Another is the equality of the ion and electron current at the probe surface. In a
plasma, the electric field is inseparable from the current. For a conducting shield
such as the cage to produce a region of zero electric field, the conductors and the
plasma around them must carry the current ' . ^h would otherwise flow in the
shielded region. Since this current is limited by the saturation characteristics the
shielding properties are also limited.

Another approach to Faraday cage operation in a plasma is to tak&-w4vantage
of the sheath which forms about a probe. When the sheath is of small thickness
compared to the wire diameter, the total current to the wise is given approximately
by the particle flux times the probe area. Thus, in the limit of small sheath thick-
ness, the total current to the wires is pro portional to the number of wires times
the diameter of a single wire. This can be quite small compared to the current
through the total projected area of the outside limits of the cage. On the other hand,
if the sheath thickness is large compared to the wire diameter, the effective
diameter of the probe, in terms of its current collecting properties, is of the order
of the sheath diameter. Thus, if the spacing of the wires is less than the sheath
thickness,all of the current should be collected on the probes (Faraday cage)
resulting in shielding of the interior region.
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Now it is known that by biasing the probe relative to an electrode or to ground,
the effective sheath diameter may be reduced in size. Hence, if one constructs a
cage with fine wire size and small spacing, and the cage is floating electrically, the
external field should be shielded from the interior. Now by biasing the cage, the
sheath diameter can be reduced almost to zero. Then the cage should no longer
provide shielding; i.e. , the cage will be "open".

The above predictions are based on collisionless probe theory which is applic-
able when the mean free path is much larger than the sheath thickness. While the
effect of collisions in probe theory has not been dealt with quantitatively, it is known
that one effect of collisions is to extend the effective sheath diameter. Hence, one
might expect that when collisions are significant, the cage might behave as though
the sheath thickness was larger than the spacing between wires: even though the
collisionless theory predicted a much smaller sheath thickness.

With the above remarks in mind, it becomes possible to interpret the data of
IV B. The number density and electron temperature do not vary greatly within the
range of pressures over which the data was obtained. Consequently, the Debye
length remains relatively constant. In the region of large mean free path (low
pressure) the Debye length is about equal to the sheath thickness and is much less
than the spacing between wires. Hence, at these low pressures the cage is always
open. At somewhat higher pressures, the effect of collisions serves to extend the
sheath until the cage is closed. When the cage is biased with respect to ground, the
sheath thickness is reduced and the cage is opened. Finally, one reaches a region of
pressure in which the effect of collisions is such as to make the bias voltage ineffec-
tive in reducing the effective sheath thickness. 	 {

We are interested primarily in the low pressure region, where collisions
play no role and the sheath thickness is small compared to the present wire spacing.
To close the cage it will be necessary to reduce the wire spacing to a distance less
than the sheath thickness ( 1. 5mm), To make it possible to open the cage by means
of a bias voltage, the wire tr okness will have to be reduced correspondingly.
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SECTION V
RECOMMENDATIONS

In order to achieve the goal of a Faraday cage operable in an ambient plasma
environment the following program of research is recommended:

1. Analysis, based on collisionless probe theory modified by the presence
of an external field, should be developed to permit a ouantitative under-
standing of Faraday cage operation.

2. Experimentation should be performed in the glow discharge facility with
fine wires closely spaced (of the order of sheath distance as described in
Section IV). Such an array will be tested at a low pressure to provide
simulation of the ionosphere and also operation of the electron beam.

3. Since the difficulty of operating an electrical Faraday cage over a wide
range of plasma parameters is realized, a simple mechanically operated
Faraday cage should be constructed and tested in the glow discharge facility.
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APPENDIX I
BEAM PRODUCED PLASMA IN A CYLINDER

A. INTRODUCTION

We consider here the problem of determining the stationary distribution of
plasma particles produced in a cylinder by collisions of an axial electron beam
with neutral atoms. Impact ionization of the neutral gas produces both ions and
electrons. Some of the ions will drop into the potential well that exists in the
region of the beam. If the ion density is sufficient, the condition known as ion-
focussing will result. In this condition the region of the beam is essentially
neutral, and beam blow-up, as a result of neutral repulsion of electrons, no
longer occurs. We will assume that there is an excess of ions which with the
secondary electrons produced by ionization travel to the walls %Aere recombina-
tion takes place. It will be assumed for simplicity that the region of production
of the secondaries is a geometric axial line, that the secondaries have no axial
component of velocity when first produced, and that the cylinder is infinitely
long.

In their progress to the wall the secondaries are subject to collisions with
the neutral background gas particles and to electric fielas. The f"Ilds are gen-
erally of two types: These are fief is with external sources and fields which
result from the distribution of the particles themselves. The general treatment
of all of these effects simultaneously is presently beyond our analytic capabilities.
Therefore we shall separate field and collision effects. Moreover, we shall
assume that collisions are infre quent, but not absent,
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13,	 CO'LLISION-FREE, FIELD FREE APPROXIMATION

The Boltzmann equation which describes the stationary state of the electrons
when fields are neglected is:

f	 \dt') + fat/	 (B1)

	

c	 s

where f is the distribution function, which is in general a function of position r

and velocity v_ but is independent of time (stationary state), The quantities on the

right ,
11 

of 11 and ' of l are the rates of cha-.ge of the distribution function as a\cf/c	 ^at)s
result of collision and the presence of the source respectively as -one follows the
trajectory of a particle. The source term is present only at the center. As a
first approximation we consider the collisionless case outside the beam. Then,

v . p f = 0	 (B2)

In cylindrical coordinates (r, cp, z) Equation (B2) can be written as:

17 at- + - of +	 of = 0	 (B3)r ar	 r bp	 z az

where v r , v0 , v  are the velocity components in the r, cp, z directions respec-
tively. We neglect end effects. Then derivatives with respect to z are zero and
only two space dimensio.,s are considered. We shall for the present neglect
dependence of f on v  as well. Since azimuthal space symmetry can be assumed,
f is not explicitly dependent on cp. Iowever, f may be implicitl^' dependent on

p through v  and vP , therefore, Equation (B3) becomes:

of	 v	 r of	 3V	
of	 a^i.

—^ +
yr ar + r 

L3-2
vo app	 6v  atp	 = 0	 (I34)

Next we note that:

V . v = 0	 (B5)

since in Cartesian coordinates the spatial coordinates ana the velocity coordinates
are independent variables : Since tl_a- divergence is an invariant quantity, it is
also true in cylindrical coordinates. Therefore,
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av

r ar (r vr) + r ao = 0

IV
	

(B6)

or	 _ -vl

Also v2 = v r 2 + v(P2 is independent of spatial coordinates. Therefore,

2	 av	 av
aac0 = 2 yr ago + 2 v^ 0 = 0	 (B?)

av
Substituting for60 

from Equation (B6), we obtain:

6 
2 yr a	 - 2 v^ yr = 0

(B8)
6 

ror a	 = v^

Finally, Equation (B4) reduces to:

ofJa	 of	 of	 )

yr a r + r L- yr 6v 	 + a yr v^ = 0
	 (B9

By substitution it can be seen that a solution of this equation	 (without

being concerned about normalization) is:

2
r = g (r ) $ (v^)	 (B10)

Here b (v^) is the Dirac-delta function,

Let us now add the so,.,•.ce term to the right hand side of Equation (B9), it

is:

fat /	 s 
2 Ira r

8 	 (v^) yr h (vr )	 (B11)
s
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The solution of Equation (139) with a source terin on the right is:

f= Z (V) d (v^) h (r) h (v r)(1312)

where h(r) is the unit step function, In Equations (1311) and (B12), vs(v) is

defined as the number of electrons produced per second per unit length per unit

speed interval,
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T

since vz is also a constant,

v2 = v12	
v 

is another constant. If the collision term were absent,

f = r 8(v^) 8(v z ) h (r ) h(vr) g (vu )	 (C4)
I

could be selected as a distribution function. Here it is assumed that all the
	 E

particles have a zero velocity in the z direction.

We have previously shown that where the scattering cross-section i°
isotropic, the target particle (neutrals) are massive and slow-moving compared
to the electrons, then,

of	 y^► r 2 1T
1	 =	 r	 (f' - f) sin 8d ed (D	 (C5)"a t4'toll,	 ^ X - o	 0

In Equation (C5), X is the mean free path for scattering. The primt (') on f
designates that the independent variables are considered after collisi a.

Let us consider

7f 2 IT
I = r	 r	 f' sin 8d 9d o	 (C6)

o "o

where

f' = r 8(v0 ') 8(vz ') h (r ) h(vr 1 ) g (v2 )	 (C7)

Then,

Z i P2
IT

I = g(v2) h r	 P	 i	 8(v^ ') 8(vz ') h(vr ') sin 9d 9d cp	 (C8)
'o "o

That is, as an approximation to -_ tt > 	 we are substituting the no-collision
Coll,

distribution function in place of f and f' in Equation (C5), Moreover g(v2 ) is
taken outside the integral of Equation (C8) since the speed v of the electron is
not altered in a collision with a neutral (to a good approximation),
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For the purpose of dealing with collisions it is convenient to transfer

a spherical coordinate system. Let us define a polar angle a and an azimuthal

angle 0 such that

v1 = v sin a	 v  = v cos S sin a
(C9)

V  = v cos a	 v  = v sin )3 sin a

vz
	 V

v1
Figure 1

After collision the velocity components become

v	 = v cos a'z

vr ' = v cos )q' sin a'
v(P ' = v sin 9'sin a'

In terms of Equation (C10) the integration of Equation (C8) can be written as

I = z(v)	 ^ ('	 r
2	 r	 ^I ^ J 2 ^

	

^	 b(sin 0' sin «') a(eos a')•
v	 o 0

h(cos S' sin a') sin ededo

; "10)

(C11)

Let,

1r	 2 Tr

J = J	 J	 a(sin S' sin (X') 8(cos (X') h (cos P' sin a') sin 80do (C12)
0 0

t
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Now tl.e angles a' and 0' are functions of the angles a and A which give the

velocit3 orientation before scatter and 8 and cp, the scattering angles. In J the 	 °-

angles a and A are constants during the integration over 8 and cp, Therefore,

IT ^,2 Tr	 ^(cp - cp ) b(8 - 8 ) h (cos P'sin a')	 s
J =	 °	 °	 I	 sin 8d8dcp	 (C13)

0 o	 I 
a	

(sin P' sin a' )II 6 
(cos a') 

8 = 8
°

cp = PO

where 80 and p are those values of d and cp for which sin ^' sin a' = 0 and
cos a' = 0. Carrying out the indicated integration of Equation (C13), we obtain

Nsin B 	 to	 )
J 

= I 
a^ 

(sin 0' sin a') I I ae (cos a ') 1 9 = g	
(Cl 4

o
^°

where N are number of contributions within the region cos $' sin a' ? 0, i. e.

points where sin ^' sin a' = 0 and cos a' = 0. Let us refer to such points as

P (8 = 809 cp = 00),

At point P

sin g '=0

Therefore, _t

cos ^' = fl,

Also, since

cos a' = 0,

sin a' = fl,

But, since	

tt
0 s a' s JT ,	 1

only sin a' _ +1 is permitted. 	 t
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16'Y 1-a

Also, since:

cos O'sin a' a 0

then only

Cos ^4' _ +1 is periutted.

To summarize, at point P

sin $' = 0

Cos 0' = 1

Cos a' = 0

sin a' = 1

(C15)

^r

i
f
I.

r

It remains now to fine. the derivatives in the denominator of Equation
(C14). To do this it will be necessary to use the Law of Cosines in spherical
trigonometry in which the "sides" of the spherical triangles are measured in
size of the central angles of the sphere subtended. We refer now to Figure 2.

Figure 2
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1

The sphere referred to here is the sphere whose radius is v and
whose center is the point of collision. This sphere is intersected by a circular
cone whose half vertex angle is 6 and whose axis lies on v. The intersection of
the sphere and the cone is a circle. The intersections of this circle with the
v  v plane ano. the v  v ' plane determine angle a' and cp. The angle cp must
be related to a central angle of the sphere. This is shown in Figure 3,

-	 w

A r,^._r_ Gi

Ifeq	 f

n

Figure 3

Consider a cone of half vertex angle 6 with an angle cp swept out along
the circumference of the base. The center of the base is A and the arc is BC.
The chord of this arc is c and the radius of the base is r. It is desired to find
the central angle subtended by the chord c. This angle is y, and the length of
the generator from vertex to base is v. Application of the Law of Cosines of
plane trigonometry to triangle ABC yields

2 = 2r2c 	 (1 - cos (p)	 (C16)

t
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In triangle OAC,

r = v sin 8	 (C17)

Therefore,

c 2 = 2v2 sing 6 (1 - cos tp)	 (C18)

Application of the Law of Cosines to triangle OBC yields

c 2 = 2v2 (1 - cos y)	 (Cl 9)

If we equate the expressions for c 2 from Equations (C18) and (C19) and solve

for cos y,

cos y = 1 - sin  6 (1 - cos P)	 (C20)

Now we shall apply the Law of Cosines of spherical trigonometry
to the angles of Figure 2. First,

cos x = cos 6 - cos 6 cosy	 (C21)sin 6 sin y

Next

cos a' = cos (a + 6) cos y + sin (a + 6) sin y cos x	 (C22)

Substitution for cos x from Equation (C21) into Equation (C22) yields,

cos a' _ _ cos sin a + sin a + 6 cos 6	 (C23)
sin

Thus with Equation (C20), the angle a' is known in terms of a, 6, and 0.

Again application of the Spherical Law of Cosines gives

cos y = cos z	 (C24)

and

cos 6 = cos a cos a' + sin a sin a' cos z	 (C25)

Therefore,

coo __ cos 6 - cos a cos a' 	 (C26)y	 sin a sin a
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and

cos 6
Cosy = 0

sin a (C30)

Now,

9' = A + y	 ( C27)

Therefore, between Equatiors (C23), (C26), and (C27) angle 0' is known in
terms of a, 0, and cp,

From Equation (C7), the trigonometric identity for the sine of th
sum of two angles produces

sin g' = sin g cos y + sin y cos iS	 (C28)

At P then,

sin P cos y = -sin y cos )4 	 (C29)

sin=	 sin Oi - cos2 00	 C31y	 sin ce	 (	 )

Between Equations (C29), (C30), and (C31), we obtain an expression for cos 00:

cos 00 = f sin a cos 0	 (C32)

Substitution for cos 00 in Equation (C30) resuls in

cos y = t cos S	 (C33)

Therefore:

sin y = f sin

At P since

cos a ' = 0

we obtain for cos y from Equation (C23):

sin (a + 0 ) cos 0
cos y =	 sin a	

o	 (C34)
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Between Equation (C34) and Equation (C23), we solve for cos 0 0 and get

cos 90 cos of _
	 cos a coscos 0o	 sin	 sin a	 ^	 sin	 (C35)

O	 o

Then,

sin tp =± sin
o	 sin

0

We can now calculatf the values of the derivatives in Equation (C14).

Q 1	 acp (sin ^' sin a') J e = e
0

00

Q 2 =.	 (Cos a")  
8 = 8

U

CPO

After considerable manipulation, we obtain

p1 = t cos of

cos a

Q 2 = - sin 90

Substitution into Equation (C14) with the knowledge that N = 2 (demonstrated

below) results finally in

2

J	
2 sin 8

0 = 2 (1 - sin2 a cost	 (0371
cost a	 cost a

(C36)

Let,

and
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We must now show that N = 2, On the bas`s of the values of the sine

and cosines of 8o and 009 determined thus far, there are four possible points of

contribution:

1) cos 80 = sin a _o-	 2) cos 80 = sin a cos

__ cos a cos p
cOS (GO
	 sin Q

O

_ sin
sin ^o	 sin 8

0

3) cos 80 = - sin a cos 8

cos t0 = -
cos a Cos-.P-

sin 80

_ sin 8sin too	 sin 80

_ cos a cos $
cos cpo
	 sin 8

O

_ _ yinsin 00	 sin o

4) cos 80 = - sin a cos 8

_ _ CO3 a cos 8
cos cpo
	 sin Qo

_ _ sin
sin cp0	

sin 80

Since

0 s 8o s V

sin Qo = + 1 - sin g u c0s 2 8 > 0

At the allowed values of P,

cos 8' - 1

Therefore,

cos 8 cos y- sin 8 sin y= 1

In Equation (C38), for cos y we substitute

cos 8
cos y = sin a = } cos 8

and for sin y,

sin y = t sin B

(C38)
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where it may be noted that + cos corresponds to cos 60 = sin of cos 0 and

- cos S corresponds to cos 80 = - sin a cos 0, After :Waking all the possible

substitutions, we have:

	

cos t $ + sin  3 = 1	 (a)

	

cost B - sin  S # 1	 (b)

	

- Cos 2 6 - sin  S # 1	 (c)

- Cos 2 )3 + sin2 g	 1	 (d)

Since only condition (a) is allowed, this requires

cos 9 = + sin a cos S0

sin y = -sin 0
The last condition still permits two values of sin cp0 ; hence there are Wo

allowed points of contribution, Then J in Equation (C37), in terms of velocity

components, is

v 2 +v 21
J = 2 \ z 

2^vz

(C39)

Integration over the secon(
final result for the collision term is

C
aft	 _ v2 h r	 1
at 'Coll.	 r	 2 ffXv

I term of, at !Coll, is trivial. The

vz2 +V

C v2
z	 (C40)

- T 6(vo ) 6(vz ) h(vr)

Next, to determiLe f we integrate along the characteristic, From
Equation (C3)

df = -r(af)	
dv(_

\ a t Coll, vo yr
(C41)
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68

T integration is performed under the condition that

ry = constant
cD

and

	

2	 2
v = v -v
r	 1	 0

The final result is obtained by malting the constant of integration the
no-collision distribution function of Equation (C4), This is permissible since
this distribution function is a function only of constants of the motion (constants
along the characteristic). Moreover, in this way the requirement that near the
source, the effects of collision be negligible is satisfied. Then the result for
the first iteration is

	

f = g(v2)	 r 6(v^) 6(vz ) h (r ) h(vr)^

2	 2	 2	 2

	

1	 v1 — v1— 0	 v1 — v^

	

+ 21f^	
1

v 2v1 In^	
2	

2) +	
v 2
	 (C42)

V1 +^v_L — v0	 z
`I/

2 6(v^) 6(vz) v1 2 — v^2

v1

The electron number density is

n =	 r 
M 

r f dv dv dve	 z P r
(C43)

IT	 2 iT

= J dv J da J	 do fv2 sin a
0	 0	 0

If one performs the indicated integration of Equation (C43), one obtains a zero
contribution for the second term in Equation (C42). The remaining terms yield

1n	 i * g (v2 ) dve - Cr
0

(C44)

j

3

f[

'f

i

F

Z

.^	 a



To continue the iteration process for the distribution function, one
would substitute the first result, Equation (C42), into Equation (C5) and repeat
the procedure previously followed. By inspection it can be seen that terms in

would be generated. Further inspection reveals that continued iteration will

	

produce a power series in 	 as the effect of collision on both the distribution
function and the number density,

2,	 Ions

For ions in three dimensions the Boltzmann equation, except for the
detailed appearance of the scattering term, is similar to the electron equation.
Consequently, the no-collision distribution function is similar:

2
f = F r	 b(v^) b(vz ) h(r) h(vr)	 (C45)

The collision term is different for ion-neutral collisions than for electron-
neutral collisions even when we assume that both are isotropic in the center of
mass system. The differences exist because the center of mass system and the
laboratory system are different for ions. Also, in the laboratory system, there
are transfers of energy from ions to neutrals during collision as a result of
which ion speeds are altered (more than very slightly) by scattering. In what

(	
follcws it will be assumed that the scattering is elastic, isotropic in the c, of m,

(

	

	 system, and that the mass of ions and neutrals are equal. Further assumptions
are that the speed of the ions before collisions is large compared to that of the
neutrals and that the number of ions is sufficiently small so that the neutral
distribution function is not appreciably disturbed. Under these conditions

/
1 	 ^.2n	 /2

^^	 o	 o	 (f' - f) cos e sin a de (10 (C46)
at ''coll. 

The range of integration over e is zero to ?r /2 since scattering will be limited
to the forward direction in the lab system for equal masses.

It is again convenient to work in a spherical coordinate system in
order to relate the angles after collision to the angles before collision. The
results are similar to that for the electrons except that now

v' = v cos e
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The results are summarized below:

v = v COs a
z

v = v cos S sin a
r

v(O = v sin sin a

vz  = v cos 8 cos a'

vr ' = v cos 8 cos s' sin a'

v^p ' = v cos 9 sin	 sin a'

Now consider,

- ^, 2 ^ r 7r/2
K	 I	 V cos 8d 8dcp0	

o

h(r) r 2 Ti r jr/2
F(v'2 ) 8(cos 8 sin S' sin a')

rv 2 o "o

b(cos 8 cos a') h(cos 8 cos 0' sin a') • cos 8 sin ed 8d cp

_ h (r) K
ry

2

(C47)

(C48)

Then,

K 
_ r 2 rTr/2 

F v'2) b(8-e
0	0) h(cos 8 cos $'sin a') cos 8 sin 8d8dcp

0	 0
13 0 (cos 8 cos a')II ^ (cos 8 sin ^' sin a')

e =60

cos 80 sin 90 F(v 
2 cos 2 80)	 (C49)

_

_ ^o 
I a e8 (cos 8 cos a')II ^ (cos 8 sin 0' sin a ') I 0 =(Po

e=80	8=80

l
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where the summation is over all points where the arguments of the 6 - functions

in Equation (C4) vanish and where cos 0 cos S' sin a' z 0.

The value

cos 0 = 0

gives only a zero contribution. As in the case of the electrons, the contributions
are at cos a' = 0, sin a' = 1, sin 6' = 0, cos S' = 1,

Then,

sin  00 F(v2 cos t g0)
K	 2

-	 cos 0 cos a
cp =00	 0

0 = 00

But since

cos 00 = sin a cos s

and there are two contributions (as before),

K = 2 (1 - sin  a cos 2 S) F(v2 sin2 a cos t ^)	 (C50)
sin cx I cos S I cos a

Finally, in terms of velocity components,

2v (v2 - v 2)
K =	 r	 (C51)

ivrIvz 2

Then the first term of ( af	 isa t /Coll,
2	 2

V,f ) = 2 v 2 h(r) 1	 v  +V 9 	 C52
. a t 1	 F ( r )	 r	 2	 2	 2	

(	 )
V. v - v0
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Integration along the characteristic:

	

r	 f )	 dv
a t coil,	 r

dfl =
	 2

v
(C53)

a

	

2	 1	 F (vr2 ) (v2 - vr 2 ) dvr

	

1 1rX vZ2	 v  12 -V r 2

For the second term of ;^3f
a t Coll,

2 if	 if/2
fat	 -^	 f	 cos g sin gd gds _ -	 f	 (C54)

2	 0	 0

For this term integration along the characteristic yields, when f is taken to
be approximated by the no-collision distribution function,

v
f2 + C = -	 F 

(v2 6(v^) 6(v z)(C55)

Combining these results we get

	

h(r) h(v
r ) 	 1 I 

l	 2f =	 r	 -	 v	 F (v ) 6(v^) 6(vZ)

	

2	 1	 F (vr2 ) (v2 - v r 2 )	 (C56)

+ ^̂	 2	 2 - ^ 2	 dvr

	

v Z	 yr (v1 t r)

Therefore in the case of the ions the form of the distribution function can only
be given in terms of an indefinite integral.
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D. RADIAL CHARGE SEPARATION NEGLECTING COLLISIONS

The effect of charge separation as a result of differences in inertia and
source function for the ions and electrons is to produce a radial field. The
kinetic equation describing the particle distribution is:

+
ry of _	 of	 /,2 gE 1 of - 0	 (D1 )

r a r	 vcp yr a v(p	 v	 +0	 m r	 a v  

Here q is the charge of the particle having the value +e for the ions and - e for
the electrons, while m has the value m  for the ions and m e for the electrons.
The field E is purely radial. Coupled to this equation is Poisson's equation:

V 2 = - P
	

(D2)
0

where V is the potential, p is the charge density and (0 is the permittivity of
free space. The potential is related to the field by the equation:

r
V = - r E dr	 (D3)

0

and p is obtained from the distribution functions by the equation

co	 co	 co
p = e - co i . f  dvr dvp - ` . r 

co
 f  dvr dvr	(D4)

where f  and f  are the ion and electron distributions respectively.

Using the method of characteristics, as before, we find the differential
equations describing the characteristic curves (which in the no-collision
approximation are the trajectories of the particles). These are:

dr = _ dv0 	 dvr
rvr	v 	 v 2 + .q rcp	 m

Integrating the equation formed by the first two terms on the left, we find that:

rvP = C, a constant	 (D6)

(D5)
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From the first and third terms and the constancy of rv 0 we obtain:

dr	 v  dr

r	 2 + -q r
r	 m

Integrating Equation (D7)
2

f
d r	 + m = rvr dvr - Z 2 + m f E dr = 

v 
2 + C'	 (D8)

Replacing C by rv0 and C' by

v 2
0
2

and letting

v 2 = v P 2 + vr2	
(D9)

we obtain

v 2 = v2 - 2^ r r Edr	 (D10)
o	 m .,0

which is merely a statement of the conservation of energy where v 0 2 is pro-
portional to the energy of the particle at the source and is a constant along
the characteristic.

We must now construct a distribution function which is a function of the
constants ry 2 and v 2 and reduces to the no-field distribution function near

cp	 o
the source (r o), The no-field distribution functions for electrons and ions
are:

fe = r C(v^) h (r) h (vr ) g(v2)

(Dl1)

fi = r 6(v^) h(r) h(vr ) F(v2)

where the h's are unit step functions,
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With the field the proper distribution functions are:

fe	
r a(v(p ) h(r) h(v roe ) g(voe2)

(D12)

fi	 r b vcp ) h(r) h(vroi) F(vOi2)

where:

r
V 2 = v2 + 2e	 Edr
oe	 m

e o
(D13)

„
V . 2 = v2 - m	

r 
Edr

i o

Now to obtain an explicit solution it is necessary to solve for the field E.

The number dens i ty of electrons is given by:

n	
COI CO 6(

v^) g(vo2) h(vro) h(r) dvo dve	 r	 r
-^

(D14)
n v

= r	 r b (sin a) g (v02 ) dv da
-n o

where a is the angle between the •ielocit yy vector and vr , the radial component

of the velocity. Integrating over a

ne = r J

CO	
g(vo2) h(vro) dv	 (D15)

vmin

where v nun corresponds to vo = 0, Then we transform to v0 as the variable of

integration,

1 
^CO
	 2	 dv	

dv	
1	 CO	 g(vo 2 ) v0 dvc

ne = r , o g (v0 ) dvo	 o = r 0	
2	 2e	

r

	

v0 - 
in	

! Edr
e "o

(D16)
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rr
21rrE = 1 I 2 it pr' dr'

C  O

or

)

fi
}

l
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r
E 1 r	 Pr' dr'= E 

0	 0

(D21)

Similarly:

n.
_ 1	 F(v02) v  &0
-	 (D17 )i	

r '^' 0	 ^ 
r-v 2 ± 2e	 Edr

I o	
mi o

and the charge density is given by:

2	 2
p = e(n i -n) = e1 F(v0 ) v0 dv0 - •I

	

g(vo ) v0 dvo	 (D18)e
^0
 /

' v 2 - 2e V	 0	 v 2 + 2e V
o mi 	/ o me

If we substitute Equation (D18) into Equation (D2) and solve the resulting non-linear

differential equation for V, then we have an explicit solution.

The general solution requires numerical methods; however, for distances
near the source and also distances very far from the source, approximate
analytic solutions may be obtained. Near the source, as a first approximation
the effect of the field on the distribution of particles may be considered small.
This is equivalent to neglecting 2eV/m compared to v 0 2 for most values of vo2
in the integrals of Equation (D18). Then the charge density is given by

P = r [C -B^	 (D19)

where C and B are constants

C =	 F(v02) dvo
0

(D20)

B =	 g(vo2) dvo
O

From Gauss' Law:



i
i

C

f

f

Then from Equation (19)

E = e	 I
C - BC 0 L	 (D22)

Therefore near the origin the radial field is approximately constant.

For the asymptotic solution far from the source, let us assume that for

r large, V - V0 - F  (r) where F(r) -• 0 for r -- - and V 0 is the value of V which

corresponds to p = 0. Then V0 satisfies the equation

o^F(vo2) vo dvo	g (vo2 ) vo dvo
- v	 = 0

Y vo - 2In  V °	 v° + 2e Vi	 t'	 me	 o
	

(D23)

If we expand the denominator appearing in Equation ( 18) for small F(r), we obtain:
1	 1

--	 e
^v^o - 2e V	 vo - 2e V	 1 + mi F(rj
/	 m	 m. o

	

1	 1	 v 2-2eV

	

0	 0

	

L	 m 

(D24)
1	 1	 -)

e
vo + 2e V	 vo2 + 2e V	 1 - me F(r)

m̂I 	 m oY	 e	 e	 2v + 2eV

	

o	 o

	

L me 	 J

Making use of Equations ( D2), (D18), ( D23), and ( D24), we derive the following

linear equation for F:

d

T- dF) = -AF	 (D25)
r	 r
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where A is a positive constant given by-

AF

	

= C o ` mi o (vo2 ► vo o	 +dv	 me 
r ? 

g(vo2 )e o dvo

	

v 2 - 2e	 31/2	 o v 2 + 2e	 3/2

o m .--V r	 o —V^	 m	 ° '	 JL	 t	 e

(D2G)

The solution of Equation (D25) is made easier by change of independent

variable. Let:

F(r) = G(x)	 (D27)

where

x=Ar	 (D28)

Then Equation ( D25) becomes:

x  2_G +dG +G=0

dx2
	 dx	

(1)29j

If we let g be the Laplace Transform of G and p the transform variable,

the transformed equation becomes:

P2 dp + (p-1)g = 0	 (D30)

Therefore,

g =( P -12 )dpp	 (D31)

Integrating Equation ( D31), we find:

- 1g= Ke	
p	 (D32)

where K is a constant of integration. Inversion of the Laplace Transform

yields:

G = K Jo (2x)	 (D33)
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where Jo is Bessel 's function of the first kind.

If we let:
y = 2xi

-.nd

G(x) = Q(y)	 (D34)
and if we substitute in Equation ( D29), we obtain:

dd'Q + Y dQ +Q=0
dy	 (D35)

This is immediately recognizable as Bessel 's Equation of Zero order. This
equation has two independent solutions. As a result, the general solution for
F is:

.. 1 ^	 /	 _	 _ 1

F = aJ!2I`Ar I° 1 + bN ^2LAro	 o	 Ig	
(D36j	 )

where No is the Neumann function of zero order. Since this result holds for
r large, we may use the asymptotic expansions of the Bessel functions to
write:

rr	 1	 1F	 1	 a cos (2 LAr ° )+ b size (2 _r Ar a )
r 4

Therefore, for large r, the potential oscillates about V  with the

oscillation decaying slowly as r -1/4. This implies further that the charge
density oscillates passing through periodic changes in sign.
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E. ELECTRON AND ION DISTRIBUTION FUNCTIONS IN A
UNIFORM EXTERNAL FIELD.

The stationary collisionless Boltzmann equation is

v	 c f+ F	 c v f= 0—	 — 
m	 (E1)

where v is the particle velocity, F is a force field and m is the particle

mass. Let

F = Fo + F1	 E2(	 )

where F  is externally imposed and F 1 is a result of the redistribution of

particles. The distribution f may be written as

f= f o + f 1	 (E3)

where f  is the distribution which would result if F  were the only force

field present, and

v - Vf + F	 O f = 0-	 O	 O	 V O

m	 (E4)

Then from equation (E1), (E2), (E3) and (E4) and the assumption that

F1
P v f 1 is negligible, it follows that

m

v_ • P f 1 + F 	 7 v f 1 = -F1	 9 v f o

m	 m	 (E5)
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Now if F = qE = q(E 0 + E 1 ) with q = e for ions and -e for electrons

and E 0 is a uniform external electric field, then one can define a potential such

that

E0 = -7V 0 	 (E6)

and

E1 = -vV1

Then these potentials satisfy the equations

\7 2 V = 00

p 2 V = -e rr	 r	
-

1	 s o L^1 fio d^v	 1 eo d3v	 (E7)

where eo and fio are the zero order electron and ion distributions. We will now

carry the analysis through the solution of equation (E4) for the determination of f0

and the subsequent solution of equation (E7) for the determination of E1

In cylindrical coordinates equation (E1) or equation (E4) may be written as

rvr a ^ + v ^ a ^ + aV (v^2 + ^ Er)
	

+

r	 m

^v ( -v rr + rq Ecp) = 0im
cp	 m	 (E8)

The differential equations for the characteristics are therefore

dr =
dMrvr v^ = dvr	= d v^

	

(vCP2 + m Er )	 (-v r yr +	 E,D)
(E9)
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.f

E

It can readily be shown that the characteristics for the collisionless
Boltzmann equation are also the trajectories of the particles in the given field.

From the second and fourth terms of equation (E9) we obtain

( -vT V  + rmc E CD) dT = v,., dv	 (E 10)m

From the first and third terms, we obtain

2

( yr 	 + cL E r )dr = yr dvr	 (Ell)

but since

dr = d yr

v
r

substitution in equation (E11) yields

v y dc.^ +	 E d = y dvr	 r r	 r r	 (E12)m

Addition of equation ( E10) and (E12) yields

m ( rE_ dcp + Er dr ) = v^^ dvr + yr dvr	 (E13)

Integration of equation (E13) finally results in

V2 = v 2 + 2q . ( r	 rcp
o	 m i j o E r dr +	 rET d^ i

(E 14)

Here equation (E14) is simply an expression of the fact that the energy of the
particle is the original energy 2 mvo plus the workdone on the particle by the

electric field.

i
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If the field is in the x direction, then

Er = Eo cos

EIr = -E o sin o	 (E 15)

For this case it can be shown that v  is a constant along a characteristic, a result

which, of course, also follows immediately from Newton's First Law.

A solution of equation (E4) is any function of those quantities which are constants
along the characteristics. In addition, we choose the solution such that near the
origin, it goes to the zero field limit. Let the subscript zero designate the value at
the origin. Thenthe distribution function is

2f = b	 `r"CD Jo
	 g ( vo ) h (ro) h (vro)	

(E16)

for the electrons. For the ions F ( v  ) replaces g ( v  ).

Since we are taking the initial values just outside the source h (r o) h (vro)

is redundant. We need only find (rvdo , and v  in terms of r, o, v  and v ,

or any equivalent coordinate system to obtain solution.

Now
rvCD = xvy -yvx	 (E1'7)

and
(rv) = ry	 Ito d_ ( xv -Yv ) dt

°	 0 Ito dt	 y	 x	 (E 18)

Since v is constant on the characteristic
y

( rvCD )° _ xvy -yvx + r tt o 
yvx dt	

(E 19)
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But

V  = q
m

where for simplicity we have dropped the subscripts from E ox . If we maka use of
the fact that

dy =vydt

and that yo = 0 , we can show that

rv(0 0 _ ^ b vx -vy - +_ y
(E20)

In	 g (va) or F (vo2

vo2 = v x 2 + vy2 - 2q Ex
m	 (E21)

The number density of electrons is then

M CO

ne = ( 	 Y 6 vx -vy Y +	 g (vo2) 	 dvx dvy	 (E22)
Y

If we integrate over dvx

n
 	 f

f'CO

Y g (02 )dvy	 (E23)

where in the expression of equation (E21)

v = v x - qEE yx yy 2m v 	 (E24)
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L:

Now
vo = vy2 (1 + x? ) + ( g )2 Y2 - 3q x	2 	 2m v 2 m

	

y	 y	 (F95)

We need the solution of v in terms of v and the other variables. This isy	 o
_ 1

vy	 vo2 + 3aE x +y vo4 + 8(m )2x 2 + 6qE vo x - ( E )
 2y2	 r

m	 m

2 ( 1 +x? )
2

L	 y	 (E26)

The integral in equation (E23) can be transformed to

n 	 J 1g (vo2) ddvy dv
y	 (dv o ) °	 (E27)

The required derivative from equation (E26) is

dv	 yv	 _
dd_z —°	 X+vo2 +3gEE x

0	 2 - x2 + y2	 (	 m	 )

X	 (E28)

where

X /v 4 + 8 (a 2x2 + 6qE	 2 - (qEE ) 2y2
°

	

m vo x	 m	 (E29)

Thus, in principle, if g (v o 2 ) is a known function, the integration of equation (E27)

can be completed.
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if m i s a small quantity so that

qE x
m 2

v
0

and

q y
m 2

v
0

are small compared to unity, then

ne r -^g (vo)(1-2 m -v 2	 0
0 (E30)

For this approximation to be valid, the function g(v 02 ) must be such as to give
a sizeable contribution to the integral only for

v 2 »gE
°	 m x	 (E31)

Then
ne	

r „r g (v02 ) dv0 - 3	 qEx ^^ g (v02)
2m	 2 dv0

L	 v 	 (E32)

so that the effect of the uniform field is to alter the particle density by the amount

of the second term.

We will now consider the case where the above approximation is also valid for

the ions, and where the electron and ion source distributions have a particularly

simple form:

g (v02 ) = A v02 R (v0 - ve)

F (v02 ) = B v02 h (v0 - vi)	
(E33)

f
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The the charge density o its given by

a=e(n.-ne	 '^	 2
^	 e )=	

Bv.^ - Av - 3 eEx ( B	 A )
r L.	 i	 e	

2	
m  + me	 (	 (E34)

In the present example Poisson's equation becomes

r ^)r ( ra—r + 12 ^ 2̂ = - r + G cos

	

r	 (E35)

where

H = e (Bvi2 - Ave2)

0

and

G = 3 e2 E B	 + A
2 e 	 (m i	 me )

The appropriate solution of equation ( E35) is

V = -Hr ,t G r 2
3 cos m	

(E36)

where the first term on the right is the result of radial charge separation and the
second term is the effect of the imposed uniform field.

Therefore the field induced by the redistribution of charge is

E1x = -av = 1 e2 E B + A	 2x2 + y2
cox	 2 so	 ( m 	 me)	 (x2 +y2 ) ; I	 (E37)

F= -^v = 1 e 2 	 B	 A	 x1y	 ^y	 2 eo 
E (m i + me)	

(x 
2	 2

2 + 

It may be noted that at the source (electron beam) where ( x, y) = (o, o),
the induced fields are zer a Hence at this location only the imposed uniform
field is present.
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APPENDIX II

To check the validity of the assumption of Equation (13),namely,

X j =X N/4 sin N

we substitute this expression for X  into Equation (12)and check to see whether the

equation is satisfied. To make the substitution we must evaluate the summation Lk

where

N/2 21i'	 r- sin (j +k v/N
Ek 

j=
	= E	 sin N In L Isin(j—k)(Ir N)^^

0

A

We break the sum into a number of partial sums as follows:

r	 r-
Fk = E 1 sin N In L sin( j+k) N]+ E 

2 
sin N In sin(j+k) N

j=p	 j=k+l

k-1N/2
E sin N In Isin(j —k) N I — , L sin N In Isino —k) N I
j=0

Now, if we approximate integrals for summations, we obtain for the first summation

	

k-1	 r̂-
I1 = E sin N In Lsi:i(j+k) N J ' rk-1 sin 

N In Lsin(j+k) N Jdl
j=0

If we make use of the transformation

s — O+k)N

I1 becomes

I	 r(2k-1) N sin ^2s ZkR\ In sin sds1	 k7r	 N JT

In all the terms in Equation ( 3) are treated similarly with the transformation

s=(j—k)N

-1

-2

-3

-4

-5
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being used in the second two terms, we obtain, finally,

(2k-1) 1 (1r/2) +(k1r /N)	 err /N 	 (7r/2)—(kfrIN)
k = n cos 2N Fds N + Fds	 — Fds — ^ Fds

N(2k+1) N
	 N^	 N

	

2k1r	
(2k-1) N	 ('R/2)+ikfr/N)	 —'R/N	 ('R /2)— (k1rIN)

	—sin 
N	

r Gds	 + r Gds	 + (Gds + rGds

kir
N	 (2k+1) N	 N	 N

where

F = sin 2t In I sin tj

G = cos 2t In ( sin tj

Now

rFds = (sin 2s)(.nlsin s, —)

r Gds = {(sin 2s)(lnjsin s ( 2) —s f

We now evaluate Equation (6 ) and obtain

Lk ^ —^ `—sin(2k+1) N 
sin N l In sin(2k+1) N i f

—sin(2k-1) 
N 

sin 
N L

In sin(2k-1) ,—^ —2J

L'S	
r	 1T	 i	 i	 2kn / 2?r

+sin N sin NJ `In sin N — if — i sin N
	 N — n

Then, if we neglect terms of 0(11N) compared to terms of 0(1)

L k ' 2 sin 2ND

It may immediately be noted that for k = N/4, the result of Equation (20) is obtained.

We now substitute into Equation(12)and solve forAk. The result is

	

2kn	 1

	k ^N/4 in N	
In sin kv

Li + l̂  2R Cp
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7

-6

-7

-s

-9

l

-10
	 l:



Therefore, the assumption of Equation (13 ) is valid except where k is small,
i.e., near y = f R. Since the ? G I s are small here, they make only a small
contribution to the summation of Equation (16 ); hence, the error produced 1y the
assumption of Equation (12 ) is small.

91


	GeneralDisclaimer.pdf
	0006B03.pdf
	0006B04.pdf
	0006B05.pdf
	0006B06.pdf
	0006B07.pdf
	0006B08.pdf
	0006B09.pdf
	0006B10.pdf
	0006B11.pdf
	0006B12.pdf
	0006C01.pdf
	0006C02.pdf
	0006C03.pdf
	0006C04.pdf
	0006C05.pdf
	0006C06.pdf
	0006C07.pdf
	0006C08.pdf
	0006C09.pdf
	0006C10.pdf
	0006C11.pdf
	0006C12.pdf
	0006D01.pdf
	0006D02.pdf
	0006D03.pdf
	0006D04.pdf
	0006D05.pdf
	0006D06.pdf
	0006D07.pdf
	0006D08.pdf
	0006D09.pdf
	0006D10.pdf
	0006D11.pdf
	0006D12.pdf
	0006E01.pdf
	0006E02.pdf
	0006E03.pdf
	0006E04.pdf
	0006E05.pdf
	0006E06.pdf
	0006E07.pdf
	0006E08.pdf
	0006E09.pdf
	0006E10.pdf
	0006E11.pdf
	0006E12.pdf
	0006F01.pdf
	0006F02.pdf
	0006F03.pdf
	0006F04.pdf
	0006F05.pdf
	0006F06.pdf
	0006F07.pdf
	0006F08.pdf
	0006F09.pdf
	0006F10.pdf
	0006F11.pdf
	0006F12.pdf
	0007A03.pdf
	0007A04.pdf
	0007A05.pdf
	0007A06.pdf
	0007A07.pdf
	0007A08.pdf
	0007A09.pdf
	0007A10.pdf
	0007A11.pdf
	0007A12.pdf
	0007B01.pdf
	0007B02.pdf
	0007B03.pdf
	0007B04.pdf
	0007B05.pdf
	0007B06.pdf
	0007B07.pdf
	0007B08.pdf
	0007B09.pdf
	0007B10.pdf
	0007B11.pdf
	0007B12.pdf
	0007C01.pdf
	0007C02.pdf
	0007C03.pdf
	0007C04.pdf
	0007C05.pdf
	0007C06.pdf
	0007C07.pdf
	0007C08.pdf
	0007C09.pdf
	0007C10.pdf
	0007C11.pdf
	0007C12.pdf

