331 research outputs found

    Nominal Unification from a Higher-Order Perspective

    Full text link
    Nominal Logic is a version of first-order logic with equality, name-binding, renaming via name-swapping and freshness of names. Contrarily to higher-order logic, bindable names, called atoms, and instantiable variables are considered as distinct entities. Moreover, atoms are capturable by instantiations, breaking a fundamental principle of lambda-calculus. Despite these differences, nominal unification can be seen from a higher-order perspective. From this view, we show that nominal unification can be reduced to a particular fragment of higher-order unification problems: Higher-Order Pattern Unification. This reduction proves that nominal unification can be decided in quadratic deterministic time, using the linear algorithm for Higher-Order Pattern Unification. We also prove that the translation preserves most generality of unifiers

    A Distributed algorithm to find Hamiltonian cycles in Gnp random graphs

    Get PDF
    In this paper, we present a distributed algorithm to find Hamiltonian cycles in random binomial graphs Gnp. The algorithm works on a synchronous distributed setting by first creating a small cycle, then covering almost all vertices in the graph with several disjoint paths, and finally patching these paths and the uncovered vertices to the cycle. Our analysis shows that, with high probability, our algorithm is able to find a Hamiltonian cycle in Gnp when p_n=omega(sqrt{log n}/n^{1/4}). Moreover, we conduct an average case complexity analysis that shows that our algorithm terminates in expected sub-linear time, namely in O(n^{3/4+epsilon}) pulses.Postprint (published version

    On the Limits of Second-Order Unification

    Get PDF
    Second-Order Unification is a problem that naturally arises when applying automated deduction techniques with variables denoting predicates. The problem is undecidable, but a considerable effort has been made in order to find decidable fragments, and understand the deep reasons of its complexity. Two variants of the problem, Bounded Second-Order Unification and Linear Second-Order Unification ¿where the use of bound variables in the instantiations is restricted¿, have been extensively studied in the last two decades. In this paper we summarize some decidability/undecidability/complexity results, trying to focus on those that could be more interesting for a wider audience, and involving less technical details.Peer Reviewe

    Scale-Free Random SAT Instances

    Full text link
    We focus on the random generation of SAT instances that have properties similar to real-world instances. It is known that many industrial instances, even with a great number of variables, can be solved by a clever solver in a reasonable amount of time. This is not possible, in general, with classical randomly generated instances. We provide a different generation model of SAT instances, called \emph{scale-free random SAT instances}. It is based on the use of a non-uniform probability distribution P(i)∼i−βP(i)\sim i^{-\beta} to select variable ii, where β\beta is a parameter of the model. This results into formulas where the number of occurrences kk of variables follows a power-law distribution P(k)∼k−δP(k)\sim k^{-\delta} where δ=1+1/β\delta = 1 + 1/\beta. This property has been observed in most real-world SAT instances. For β=0\beta=0, our model extends classical random SAT instances. We prove the existence of a SAT-UNSAT phase transition phenomenon for scale-free random 2-SAT instances with β<1/2\beta<1/2 when the clause/variable ratio is m/n=1−2β(1−β)2m/n=\frac{1-2\beta}{(1-\beta)^2}. We also prove that scale-free random k-SAT instances are unsatisfiable with high probability when the number of clauses exceeds ω(n(1−β)k)\omega(n^{(1-\beta)k}). %This implies that the SAT/UNSAT phase transition phenomena vanishes when β>1−1/k\beta>1-1/k, and formulas are unsatisfiable due to a small core of clauses. The proof of this result suggests that, when β>1−1/k\beta>1-1/k, the unsatisfiability of most formulas may be due to small cores of clauses. Finally, we show how this model will allow us to generate random instances similar to industrial instances, of interest for testing purposes

    Community Structure in Industrial SAT Instances

    Get PDF
    Modern SAT solvers have experienced a remarkable progress on solving industrial instances. Most of the techniques have been developed after an intensive experimental process. It is believed that these techniques exploit the underlying structure of industrial instances. However, there are few works trying to exactly characterize the main features of this structure. The research community on complex networks has developed techniques of analysis and algorithms to study real-world graphs that can be used by the SAT community. Recently, there have been some attempts to analyze the structure of industrial SAT instances in terms of complex networks, with the aim of explaining the success of SAT solving techniques, and possibly improving them. In this paper, inspired by the results on complex networks, we study the community structure, or modularity, of industrial SAT instances. In a graph with clear community structure, or high modularity, we can find a partition of its nodes into communities such that most edges connect variables of the same community. In our analysis, we represent SAT instances as graphs, and we show that most application benchmarks are characterized by a high modularity. On the contrary, random SAT instances are closer to the classical Erd\"os-R\'enyi random graph model, where no structure can be observed. We also analyze how this structure evolves by the effects of the execution of a CDCL SAT solver. In particular, we use the community structure to detect that new clauses learned by the solver during the search contribute to destroy the original structure of the formula. This is, learned clauses tend to contain variables of distinct communities

    Reducing SAT to Max2SAT

    Get PDF
    In the literature we find reductions from 3SAT to Max2SAT. These reductions are based on the usage of a gadget, i.e., a combinatorial structure that allows translating constraints of one problem to constraints of another. Unfortunately, the generation of these gadgets lacks an intuitive or efficient method. In this paper, we provide an efficient and constructive method for Reducing SAT to Max2SAT and show empirical results of how MaxSAT solvers are more efficient than SAT solvers solving the translation of hard formulas for Resolution.Supported by projects PROOFS (PID2019-109137GB-C21) and EU-H2020-RIP LOGISTAR (No. 769142)

    Community structure in industrial SAT instances

    Get PDF
    Modern SAT solvers have experienced a remarkable progress on solving industrial instances. It is believed that most of these successful techniques exploit the underlying structure of industrial instances. Recently, there have been some attempts to analyze the structure of industrial SAT instances in terms of complex networks, with the aim of explaining the success of SAT solving techniques, and possibly improving them. In this paper, we study the community structure, or modularity, of industrial SAT instances. In a graph with clear community structure, or high modularity, we can find a partition of its nodes into communities such that most edges connect variables of the same community. Representing SAT instances as graphs, we show that most application benchmarks are characterized by a high modularity. On the contrary, random SAT instances are closer to the classical Erdös-Rényi random graph model, where no structure can be observed. We also analyze how this structure evolves by the effects of the execution of a CDCL SAT solver, and observe that new clauses learned by the solver during the search contribute to destroy the original structure of the formula. Motivated by this observation, we finally present an application that exploits the community structure to detect relevant learned clauses, and we show that detecting these clauses results in an improvement on the performance of the SAT solver. Empirically, we observe that this improves the performance of several SAT solvers on industrial SAT formulas, especially on satisfiable instances.Peer ReviewedPostprint (published version

    On the complexity of bounded second-order unification and stratified context unification

    Get PDF
    Bounded Second-Order Unification is a decidable variant of undecidable Second-Order Unification. Stratified Context Unification is a decidable restriction of Context Unification, whose decidability is a long-standing open problem. This paper is a join of two separate previous, preliminary papers on NP-completeness of Bounded Second-Order Unification and Stratified Context Unification. It clarifies some omissions in these papers, joins the algorithmic parts that construct a minimal solution, and gives a clear account of a method of using singleton tree grammars for compression that may have potential usage for other algorithmic questions in related areas. © The Author 2010. Published by Oxford University Press. All rights reserved.This research has been partially supported by the research projects Mulog-2 (TIN2007-68005-C04-01) and SuRoS TIN2008-04547) funded by the CICyTPeer Reviewe

    Polynomial Calculus for MaxSAT

    Get PDF
    MaxSAT is the problem of finding an assignment satisfying the maximum number of clauses in a CNF formula. We consider a natural generalization of this problem to generic sets of polynomials and propose a weighted version of Polynomial Calculus to address this problem. Weighted Polynomial Calculus is a natural generalization of MaxSAT-Resolution and weighted Resolution that manipulates polynomials with coefficients in a finite field and either weights in ? or ?. We show the soundness and completeness of these systems via an algorithmic procedure. Weighted Polynomial Calculus, with weights in ? and coefficients in ??, is able to prove efficiently that Tseitin formulas on a connected graph are minimally unsatisfiable. Using weights in ?, it also proves efficiently that the Pigeonhole Principle is minimally unsatisfiable
    • …
    corecore